954 resultados para Weakly bound nuclei
Resumo:
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily. Several members of this family have been shown to transduce their signals through binding to type I and type II serine-(threonine) kinase receptors. Here we report the cDNA cloning and characterization of a human type II receptor for BMPs (BMPR-II), which is distantly related to DAF-4, a BMP type II receptor from Caenorhabditis elegans. In transfected COS-1 cells, osteogenic protein (OP)-1/BMP-7, and less efficiently BMP-4, bound to BMPR-II. BMPR-II bound ligands only weakly alone, but the binding was facilitated by the presence of previously identified type I receptors for BMPs. Binding of OP-1/BMP-7 to BMPR-II was also observed in nontransfected cell lines. Moreover, a transcriptional activation signal was transduced by BMPR-II in the presence of type I receptors after stimulation by OP-1/BMP-7.
Resumo:
We examine how the polypeptide chain in protein crystal structures exploits the multivalent hydrogen-bonding potential of bound water molecules. This shows that multiple interactions with a single water molecule tend to occur locally along the chain. A distinctive internal-coordinate representation of the local water-binding segments reveals several consensus conformations. The fractional water occupancy of each was found by comparison of the total number of conformations in the database regardless of the presence or absence of bound water. The water molecule appears particularly frequently in type II beta-turn geometries and an N-terminal helix feature. This work constitutes a first step into assessing not only the generality but also the significance of specific water binding in globular proteins.
Resumo:
We have analyzed the pathway of folding of barnase bound to GroEL to resolve the controversy of whether proteins can fold while bound to chaperonins (GroEL or Cpn60) or fold only after their release into solution. Four phases in the folding were detected by rapid-reaction kinetic measurements of the intrinsic fluorescence of both wild type and barnase mutants. The phases were assigned from their rate laws, sensitivity to mutations, and correspondence to regain of catalytic activity. At high ratios of denatured barnase to GroEL, 4 mol of barnase rapidly bind per 14-mer of GroEL. At high ratios of GroEL to barnase, 1 mol of barnase binds with a rate constant of 3.5 x 10(7) s-1.M-1. This molecule then refolds with a low rate constant that changes on mutation in parallel with the rate constant for the folding in solution. This rate constant corresponds to the regain of the overall catalytic activity of barnase and increases 15-fold on the addition of ATP to a physiologically relevant value of approximately 0.4 s-1. The multiply bound molecules of barnase that are present at high ratios of GroEL to barnase fold with a rate constant that is also sensitive to mutation but is 10 times higher. If the 110-residue barnase can fold when bound to GroEL and many moles can bind simultaneously, then smaller parts of large proteins should be able to fold while bound.
Resumo:
We have identified a class of proteins that bind single-stranded telomeric DNA and are required for the nuclear organization of telomeres and/or telomere-associated proteins. Rlf6p was identified by its sequence similarity to Gbp1p, a single-stranded telomeric DNA-binding protein from Chlamydomonas reinhardtii. Rlf6p and Gbp1p bind yeast single-stranded G-strand telomeric DNA. Both proteins include at least two RNA recognition motifs, which are found in many proteins that interact with single-stranded nucleic acids. Disruption of RLF6 alters the distribution of repressor/activator protein 1 (Rap1p), a telomere-associated protein. In wild-type yeast cells, Rap1p localizes to a small number of perinuclear spots, while in rlf6 cells Rap1p appears diffuse and nuclear. Interestingly, telomere position effect and telomere length control, which require RAP1, are unaffected by rlf6 mutations, demonstrating that Rap1p localization can be uncoupled from other Rap1p-dependent telomere functions. In addition, expression of Chlamydomonas GBP1 restores perinuclear, punctate Rap1p localization in rlf6 mutant cells. The functional complementation of a fungal gene by an algal gene suggests that Rlf6p and Gbp1p are members of a conserved class of single-stranded telomeric DNA-binding proteins that influence nuclear organization. Furthermore, it demonstrates that, despite their unusual codon bias, C. reinhardtii genes can be efficiently translated in Saccharomyces cerevisiae cells.
Resumo:
The suppressor of Hairy-wing [su(Hw)] protein exerts a polar effect on gene expression by repressing the function of transcriptional enhancers located distally from the promoter with respect to the location of su(Hw) binding sequences. The directionality of this effect suggests that the su(Hw) protein specifically interferes with the basic mechanism of enhancer action. Moreover, mutations in modifier of mdg4 [mod(mdg4)] result in the repression of expression of a gene when the su(Hw) protein is bound to sequences in the copy of this gene located in the homologous chromosome. This effect is dependent on the presence of the su(Hw) binding region from the gypsy retrotransposon in at least one of the chromosomes and is enhanced by the presence of additional gypsy sequences in the other homology. This phenomenon is inhibited by chromosomal rearrangements that disrupt pairing, suggesting that close apposition between the two copies of the affected gene is important for trans repression of transcription. These results indicate that, in the absence of mod-(mdg4) product, the su(Hw) protein present in one chromosome can act in trans and inactivate enhancers located in the other homolog.
Resumo:
These studies were initiated to elucidate the mechanism of DNA nuclear transport in mammalian cells. Biotin- or gold-labeled plasmid and plasmid DNA expression vectors for Escherichia coli beta-galactosidase or firefly luciferase were microinjected into the cytoplasm of primary rat myotubes in culture. Plasmid DNA was expressed in up to 70% of the injected myotubes, which indicates that it entered intact, postmitotic nuclei. The nuclear transport of plasmid DNA occurred through the nuclear pore by a process common to other large karyophilic macromolecules. The majority of the injected plasmid DNA was sequestered by cytoplasmic elements. This understanding of plasmid DNA nuclear transport provides a basis for increasing the efficiency of gene transfer.
Resumo:
The SSN6-TUP1 protein complex represses transcription of diversely regulated genes in the yeast Saccharomyces cerevisiae. Here we present evidence that MIG1, a zinc-finger protein in the EGR1/Zif268 family, recruits SSN6-TUP1 to glucose-repressed promoters. DNA-bound LexA-MIG1 represses transcription of a target gene in glucose-grown cells, and repression requires SSN6 and TUP1. We also show that MIG1 and SSN6 fusion proteins interact in the two-hybrid system. Unexpectedly, we found that LexA-MIG1 activates transcription strongly in an ssn6 mutant and weakly in a tup1 mutant. Finally, LexA-MIG1 does not repress transcription in glucose-deprived cells, and MIG1 is differentially phosphorylated in response to glucose availability. We suggest a role for phosphorylation in regulating repression.
Resumo:
Bioaerosols are a subgroup of atmospheric aerosols and are often linked to the spread of human, animal and plant diseases. Bioaerosols also may play an indirect effect on environmental processes, including the formation of precipitation and alteration of the global climate through their role as nuclei for cloud droplet formation. Several types of biological organisms (e.g., fungi and bacteria) have been shown to be effective ice nuclei (IN) and cloud condensation nuclei (CCN). During 21 days in August 2013 we participated in a collaborative international campaign at a rural, coastal site near the village of Ucluelet on the west coast of Vancouver Island, British Columbia, Canada. The experiments were conducted as part of the NETCARE project (the NETwork on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments), in part to examine cloud nuclei properties of marine aerosol. The study was conducted from a mobile trailer located approximately 100 m from the coast. A suite of aerosol instrumentation was operated for approximately one month. Key instruments utilized as a part of this thesis include the wideband integrated bioaerosol sensor (WIBS-4A) and the multiple orifice uniform deposition impactor (MOUDI) coupled with an off-line droplet freezing technique (DFT) for the measurement of ice nucleation activity of particles in immersion mode. The WIBS measures the concentration and properties of individual fluorescent particles suspended in the air, which can serve as a proxy for airborne biological particle content. Particles shown to be fluorescent by the WIBS instrument were divided into seven categories based on the pattern of fluorescence each particle exhibited in the three fluorescent channels. Results of the WIBS analysis show that the fluorescent particle concentration in the region correlated well with IN number. The fluorescent particle concentration correlated well with the number of particles shown to be ice active as a function of both particle size and freezing temperature. Correlations involving marine aerosols and marine biological activity indicate that the majority of IN measured at the coastal site likely are not from have marine sources.
Resumo:
This research study deals with the quantification and characterization of the EPS obtained from two 25 L bench scale membrane bioreactors (MBRs) with micro-(MF-MBR) and ultrafiltration (UF-MBR) submerged membranes. Both reactors were fed with synthetic water and operated for 168 days without sludge extraction, increasing their mixed liquor suspended solid (MLSS) concentration during the experimentation time. The characterization of soluble EPS (EPSs) was achieved by the centrifugation of mixed liquor and bound EPS (EPSb) by extraction using a cationic resin exchange (CER). EPS characterization was carried out by applying the 3-dimensional excitation–emission matrix fluorescence spectroscopy (3D-EEM) and high-performance size exclusion chromatography (HPSEC) with the aim of obtaining structural and functional information thereof. With regard to the 3D-EEM analysis, fluorescence spectra of EPSb and EPSs showed 2 peaks in both MBRs at all the MLSS concentrations studied. The peaks obtained for EPSb were associated to soluble microbial by-product-like (predominantly protein-derived compounds) and to aromatic protein. For EPSs, the peaks were associated with humic and fulvic acids. In both MBRs, the fluorescence intensity (FI) of the peaks increased as MLSS and protein concentrations increased. The FI of the EPSs peaks was much lower than for EPSb. It was verified that the evolution of the FI clearly depends on the concentration of protein and humic acids for EPSb and EPSs, respectively. Chromatographic analysis showed that the intensity of the EPSb peak increased while the concentrations of MLSS did. Additionally, the mean MW calculated was always higher the higher the MLSS concentrations in the reactors. MW was higher for the MF-MBR than for the UF-MBR for the same MLSS concentrations demonstrating that the filtration carried out with a UF membrane lead to retentions of lower MW particles.
Resumo:
An exhaustive characterization of the biogas from some waste disposal facilities has been carried out. The analysis includes the main components (methane, carbon dioxide, nitrogen and oxygen) as well as trace components such as hydrogen sulphide, ammonia and VOCs (volatile organic compounds) including siloxanes and halogenated compounds. VOCs were measured by GC/MS (Gas Chromatography/Mass Spectrometry) using two different procedures: thermal desorption of the Tenax TA and Carbotrap 349 tubes and SPME (Solid Phase Micro-Extraction). A method has been established to measure the total halogen content of the biogas with the AOX (adsorbable organically bound halogens) technique. The equipment used to analyze the samples was a Total Organic Halogen Analyzer (TOX-100). Similar results were obtained when comparing the TOX (Total Organic Halogen) values with those obtained by GC/MS. The halogen content in all the samples was under 22 mg Cl/Nm3 which is below the limit of 150 mg/Nm3 proposed in the Spanish Regulations for any use of the biogas. The low chlorine content in the biogas studied, as well as the low content of other trace compounds, makes it suitable for use as a fuel for electricity generating engines.
Resumo:
The synthesis of nano-sized ZIF-11 with an average size of 36 ± 6 nm is reported. This material has been named nano-zeolitic imidazolate framework-11 (nZIF-11). It has the same chemical composition and thermal stability and analogous H2 and CO2 adsorption properties to the conventional microcrystalline ZIF-11 (i.e. 1.9 ± 0.9 μm). nZIF-11 has been obtained following the centrifugation route, typically used for solid separation, as a fast new technique (pioneering for MOFs) for obtaining nanomaterials where the temperature, time and rotation speed can easily be controlled. Compared to the traditional synthesis consisting of stirring + separation, the reaction time was lowered from several hours to a few minutes when using this centrifugation synthesis technique. Employing the same reaction time (2, 5 or 10 min), micro-sized ZIF-11 was obtained using the traditional synthesis while nano-scale ZIF-11 was achieved only by using centrifugation synthesis. The small particle size obtained for nZIF-11 allowed the use of the wet MOF sample as a colloidal suspension stable in chloroform. This helped to prepare mixed matrix membranes (MMMs) by direct addition of the membrane polymer (polyimide Matrimid®) to the colloidal suspension, avoiding particle agglomeration resulting from drying. The MMMs were tested for H2/CO2 separation, improving the pure polymer membrane performance, with permeation values of 95.9 Barrer of H2 and a H2/CO2 separation selectivity of 4.4 at 35 °C. When measured at 200 °C, these values increased to 535 Barrer and 9.1.