933 resultados para Water quality bioassay
Resumo:
A study was conducted to investigate the sediment health and water quality of the River Sagana, Kenya, as impacted by the local tanning industry. Chemical analysis identified the main chemical pollutants (pentachlorophenols and chromium) while a bioassay addressed pollutant bioavailability. The bioassay, exploiting the luminescence response of a lux marked bacterial biosensor, was coupled to a dehydrogenase and Dapnia magna test to determine toxicity effects on sediments. Results highlighted the toxicity of the tannery effluent to the sediments at the point of discharge (64% of control bioluminescence) with gradual improvement downstream. There was a significant increase in dehydrogenase downstream, with the enzyme activity attaining a peak at 600 m, also indicating a gradual reduction of toxicity. Biological oxygen demand (19.56 mg L(-1)) dissolved oxygen (3.97 mg L(-1)) and high lethal dose value (85%) of D. magna also confirmed an initial stress at the point of discharge and recovery downstream. Optical density of surface water demonstrated an increase in suspended particulates and colour after the discharge point, eventually decreasing beyond 400 m. In conclusion, the study highlighted the importance of understanding the biogeochemistry of river systems impacted by industries discharging effluent into them and the invaluable role of a biosensor-based ecotoxicological approach to address effluent hazards, particularly in relation to river sediments.
Resumo:
Access to potable water is frequently said to be the defining world crisis of the twenty-first century. The argument is usually framed in terms of either direct environmental constraints or various totalistic views of how the political determines outcomes. There is little or no scope for the agency of practical politics. Both physical and human geographers tend to be dismissive of the possibilities of democratic politics ever resolving crises such as those of the geography of water provision, in part because of views of scientific expertise that devalue popular participation in decisions about technical matters such as water quality and distribution. Such dismissal also has much to do with a more generalized denigration of politics. Politics (the art of political deliberation, negotiation, and compromise) needs defending against its critics and many of its practitioners. Showing how politics is at work around the world in managing water problems and identifying the challenges that water problems pose for politics provides a retort to those who can only envisage inevitable destruction or a totalistic political panacea as the outcomes of the crisis of the century.
Resumo:
Nutrient loss from agricultural land following organic fertilizer spreading can lead to eutrophication and poor water quality. The risk of pollution is partly related to the soil water status during and after spreading. In response to these issues, a decision support system (DSS) for nutrient management has been developed to predict when soil and weather conditions are suitable for slurry spreading. At the core of the DSS, the Hybrid Soil Moisture Deficit (HSMD) model estimates soil water status relative to field capacity (FC) for three soil classes (well, moderately and poorly drained) and has potential to predict the occurrence of a transport vector when the soil is wetter than FC. Three years of field observation of volumetric water content was used to validate HSMD model predictions of water status and to ensure correct use and interpretation of the drainage classes. Point HSMD model predictions were validated with respect to the temporal and spatial variations in volumetric water content and soil strength properties. It was found that the HSMD model predictions were well related to topsoil water content through time, but a new class intermediate between poor and moderate, perhaps ‘imperfectly drained’, was needed. With correct allocations of a field into a drainage class, the HSMD model predictions reflect field scale trends in water status and therefore the model is suitable for use at the core of a DSS.
Resumo:
Diverse land use activities can elevate risk of microbiological contamination entering stream headwaters. Spatially distributed water quality monitoring carried out across a 17km(2) agricultural catchment aimed to characterize microbiological contamination reaching surface water and investigate whether winter agricultural land use restrictions proved effective in addressing water quality degradation. Combined flow and concentration data revealed no significant difference in fecal indicator organism (FIO) fluxes in base flow samples collected during the open and prohibited periods for spreading organic fertilizer, while relative concentrations of Escherichia coli, fecal streptococci and sulfite reducing bacteria indicated consistently fresh fecal pollution reached aquatic receptors during both periods. Microbial source tracking, employing Bacteroides 16S rRNA gene markers, demonstrated a dominance of bovine fecal waste in river water samples upstream of a wastewater treatment plant discharge during open periods. This contrasted with responses during prohibited periods where human-derived signatures dominated. Differences in microbiological signature, when viewed with hydrological data, suggested that increasing groundwater levels restricted vertical infiltration of effluent from on-site wastewater treatment systems and diverted it to drains and surface water. Study results reflect seasonality of contaminant inputs, while suggesting winter land use restrictions can be effective in limiting impacts of agricultural wastes to base flow water quality.
Resumo:
As zonas costeiras, estuarinas e lagunares são consideradas áreas muito produtivas e dotadas de grande biodiversidade sendo, por isso, consideradas de elevado valor ecológico e económico. No entanto, nas últimas décadas tem vindo a verificar-se um aumento da contaminação destes ecossistemas como resultado de diversas actividades antrópicas. As abordagens actualmente disponíveis para avaliação do impacto da poluição em ecossistemas estuarinos e lagunares apresentam diversos tipos de lacunas, pelo que é importante desenvolver metodologias mais eficazes com organismos autóctones. Neste contexto, o objectivo central desta dissertação consistiu em desenvolver e validar métodos ecologicamente relevantes para avaliação da contaminação estuarina e dos seus efeitos, utilizando o góbio-comum (Pomatoschistus microps), quer como organismo-teste quer como espécie sentinela, devido à importante função que desempenha nas cadeias tróficas de diversos estuários da costa Portuguesa. A Ria de Aveiro foi seleccionada como área de estudo principalmente pelo facto de possuir zonas com diferentes tipos de contaminação predominante e de haver conhecimento científico de base abundante e de elevada qualidade sobre este ecosistema. Na primeira fase do estudo, foram investigados os efeitos agudos de dois hidrocarbonetos aromáticos policíclicos (HAPs) (benzo[a]pireno e antraceno), de um fuel-óleo e de dois metais (cobre e mercúrio) em P. microps, utilizando ensaios laboratoriais baseados em biomarcadores e em parâmetros comportamentais, os quais foram avaliados utilizando um dispositivo expressamente desenvolvido para o efeito, designado por speed performance device (SPEDE). Como biomarcadores foram utilizados parâmetros envolvidos em funções fisiológicas determinantes para a sobrevivência e desempenho dos animais (neurotransmissão, obtenção de energia, destoxificação e defesas anti-oxidantes), nomeadamente a actividade das enzimas acetilcolinesterase, lactato desidrogenase, CYP1A1, glutationa S-transferases, glutationa reductase, glutationa peroxidase, superóxido dismutase, catalase, tendo ainda sido determinados os níveis de peroxidação lipídica como indicador de danos oxidativos. De forma global, os resultados indicaram que os agentes e a mistura testados têm a capacidade de interferir com a função neurológica, de alterar as vias utilizadas para obtenção de energia celular, induzir as defesas antioxidantes e, no caso do cobre e do mercúrio, de causarem peroxidação lipídica. Foram ainda obtidas relações concentração-resposta a nível dos parâmetros comportamentais testados, nomeadamente a capacidade de nadar contra a corrente e a distância percorrida a nadar contra o fluxo de água, sugerindo que os agentes testados podem, por exemplo, diminuir a capacidade de fuga aos predadores, as probabilidades de captura de presas e o sucesso reprodutivo. Na segunda fase, tendo sido já adaptadas técnicas para determinação de vários biomarcadores em P. microps e estudada a sua resposta a dois grupos de poluentes particularmente relevantes em ecossistemas estuarinos e lagunares (metais e HAPs), foi efectuado um estudo de monitorização utilizando P. microps como bioindicador e que incluiu diversos parâmetros ecológicos e ecotoxicológicos, nomedamente: 20 parâmetros indicativos da qualidade da água e do sedimento, concentração de 9 metais em sedimentos e no corpo de P. microps, 8 biomarcadores e 2 índices de condição na espécie seleccionada. A amostragem foi efectuada em quatro locais da Ria de Aveiro, um considerado como referência (Barra) e três com diferentes tipos predominantes de contaminação (Vagueira, Porto de Aveiro e Cais do Bico), sazonalmente, durante um ano. Os resultados obtidos permitiram uma caracterização ecotoxicológica dos locais, incluindo informação sobre a qualidade da água, concentrações de contaminantes ambientais prioritários nos sedimentos e nos tecidos de P. microps, capacidade desta espécie para bioacumular metais, efeitos exercidos pelas complexas misturas de poluentes presentes em cada uma das zonas de amostragem nesta espécie e possíveis consequências para a população. A análise multivariada permitiu analisar de forma integrada todos os resultados, proporcionando informação que não poderia ser obtida analisando os dados de forma compartimentalizada. Em conclusão, os resultados obtidos no âmbito desta dissertação indicam que P. microps possui características adequadas para ser utilizado como organismoteste em ensaios laboratoriais (e.g. abundância, fácil manutenção, permite a determinação de diferentes tipos de critérios de efeito utilizando um número relativamente reduzido de animais, entre outras) e como organismo sentinela em estudos de monitorização da poluição e da qualidade ambiental, estando portanto de acordo com estudos de menor dimensão previamente efectuados. O trabalho desenvolvido permitiu ainda adaptar a P. microps diversas técnicas bioquímicas vulgarmente utilizadas como biomarcadores em Ecotoxicologia e validá-las quer no laboratório quer em cenários reais; desenvolver um novo bioensaio, utilizando um dispositivo de teste especialmente concebido para peixes epibentónicos baseado na performance natatória de uma espécie autóctone e em biomarcadores; relacionar os efeitos a nível bioquímico com parâmetros comportamentais que ao serem afectados podem reduzir de forma drástica e diversificada (e.g. aumento da mortalidade, diminuição do sucesso reprodutivo, redução do crescimento) a contribuição individual para a população. Finalmente, foi validada uma abordagem multidisciplinar, combinando metodologias ecológicas, ecotoxicológicas e químicas que, quando considerada de forma integrada utilizando análises de estatística multivariada, fornece informação científica da maior relevância susceptível de ser utilizada como suporte a medidas de conservação e gestão em estuários e sistemas lagunares.
Resumo:
The challenge on implementation of the EU Water Framework Directive (WFD) fosters the development of new monitoring methods and approaches. It is now commonly accepted that the use of classical monitoring campaigns in discrete point is not sufficient to fully assess and describe a water body. Due to this the WFD promote the use of modelling techniques in surface waters to assist all phases of the process, from characterisation and establishment of reference conditions to identification of pressures and assessment of impact. The work presented in this communication is based on these principles. A classical monitoring of the water status of the main transitional water bodies of Algarve (south of Portugal) is combined with advanced in situ water profiling and hydrodynamic, water quality and ecological modelling of the systems to build a complete description of its state. This approach extends spatially and temporally the resolution of the classical point sampling. The methodology was applied during a 12 month program in Ria Formosa coastal lagoon, the Guadiana estuary and the Arade estuary. The synoptic profiling uses an YSI 6600 EDS multi-parameter system attached to a boat and a GPS receiver to produce monthly synoptic maps of the systems. This data extends the discrete point sampling with laboratory analysis performed monthly in several points of each water body. The point sampling is used to calibrate the profiling system and to include variables, such as nutrients, not measured by the sensors. A total of 1427 samplings were performed for physical and chemical parameters, chlorophyll and microbiologic contamination in the water column. This data is used to drive the hydrodynamic, transport and ecological modules of the MOHID water modelling system (www.mohid.com), enabling an integrate description of the water column.
Resumo:
Dissertação mest., Gestão da Água e da Costa, Universidade do Algarve, 2008
Resumo:
The undesirable enrichment of water by nutrients may be a problem, especially in areas with restricted exchange with the sea. The tidal regime flushes the system and contributes for the removal of phytoplankton, favouring phytobenthos as the target of enhanced nutrients. Water samples were collected during the years of 2006 and 2007-08 for nutrients, chlorophyll a and dissolved oxygen. Sediment sample s were also collected for pore water nutrients and benthic chlorophyll a. From comparison with previous work, a decrease in the nitrogen concentration in the water column can be pointed out, which may indicate an improvement of the water quality. Pore water DAIN represents approximately 75% of the total DAIN of the whole lagoon. Benthic chlorophyll a concentrations were much larger than in the water column, representing around 99% of the total chlorophyll existent in the lagoon. Benthic microalgae play a relevant role in this system and therefore standard monitoring programs of the WFD, which do not consider this component, may fail to track nutrient-driven changes in primary producers. Dissolved oxygen concentration could be near critical levels during the summer (early in the morning), especially in the inner channels.
Resumo:
The purpose of this study on beach quality assessment and management was to evaluate the quality of five beaches in the Algarve Sotavento region of Portugal and to identify beach users’ preferences and priorities regarding their visit to a beach. The Algarve is one of the country’s most internationally known regions and it is generally perceived as a major tourist destination. Because of the increasing level of tourists, there is a specific need to address beach quality, as overcrowding can result in excessive litter, reduce water quality and consequently reduce the socio-economic value of the area. The main methodology for the evaluation of the beach quality in this pilot project was the Bathing Area Registration and Evaluation framework (BARE), which recognizes five beach types (rural, remote, resort, urban and village) through five main priority issues of concern to beach users (water quality, scenery, litter, safety, facilities) and evaluates the beach quality, ranging from one (low) to five (high) stars. After overall bathing area classification, Quarteira-Vilamoura, Ilha do Farol, Ilha Deserta and Ilha da Armona received three-star rating and Quinta do Lago site obtained a one-star rating. The quantitative research data on beach users’ preferences and priorities was obtained through administration of 50 questionnaires per beach and showed that beach users at all sites expressed the need for improved cleanliness, safety and facilities on the beach. The BARE framework, together with the questionnaire surveys, allowed the identification of management priorities required to improve the quality of individual beaches and therefore increase income from tourism.
Resumo:
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.
Resumo:
This study deals with investigating the groundwater quality for irrigation purpose, the vulnerability of the aquifer system to pollution and also the aquifer potential for sustainable water resources development in Kobo Valley development project. The groundwater quality is evaluated up on predicting the best possible distribution of hydrogeochemicals using geostatistical method and comparing them with the water quality guidelines given for the purpose of irrigation. The hydro geochemical parameters considered are SAR, EC, TDS, Cl-, Na+, Ca++, SO4 2- and HCO3 -. The spatial variability map reveals that these parameters falls under safe, moderate and severe or increasing problems. In order to present it clearly, the aggregated Water Quality Index (WQI) map is constructed using Weighted Arithmetic Mean method. It is found that Kobo-Gerbi sub basin is suffered from bad water quality for the irrigation purpose. Waja Golesha sub-basin has moderate and Hormat Golena is the better sub basin in terms of water quality. The groundwater vulnerability assessment of the study area is made using the GOD rating system. It is found that the whole area is experiencing moderate to high risk of vulnerability and it is a good warning for proper management of the resource. The high risks of vulnerability are noticed in Hormat Golena and Waja Golesha sub basins. The aquifer potential of the study area is obtained using weighted overlay analysis and 73.3% of the total area is a good site for future water well development. The rest 26.7% of the area is not considered as a good site for spotting groundwater wells. Most of this area fall under Kobo-Gerbi sub basin.
Resumo:
Knowledge of how water is perceived, used and managed in a community is critical to the endeavour of water governance. Surveys of individuals residing in a community offer a valuable avenue to gain information about several of these aspects of water. This paper draws upon experiences in three First Nation communities to explore the values of surveys to illuminate water issues and inform water decision-making. Findings from experiences with surveys in Six Nations of the Grand River, Mississaugas of the New Credit, and Oneida First Nation of the Thames reveal rich information about how surveys can provide insights about: the connection of individuals to the land, water and their community; reasons for valuing water; perceptions of water quality and issues surrounding water-related advisories; and, degree of satisfaction with water management and governance at different scales. Community partners reflected upon the findings of the survey for their community. Dialogue was then broadened across the cases as the partners offer benefits and challenges associated with the survey. Community surveys offer an important tool in the resource managers’ toolbox to understand social perceptions of water and provide valuable insights that may assist in improving its governance.
Resumo:
On average approximately 13% of the water that is withdrawn by Canadian municipal water suppliers is lost before it reaches final users. This is an important topic for several reasons: water losses cost money, losses force water agencies to draw more water from lakes and streams thereby putting more stress on aquatic ecosystems, leaks reduce system reliability, leaks may contribute to future pipe failures, and leaks may allow contaminants to enter water systems thereby reducing water quality and threatening the health of water users. Some benefits of leak detection fall outside water agencies’ accounting purview (e.g. reduced health risks to households connected to public water supply systems) and, as a result, may not be considered adequately in water agency decision-making. Because of the regulatory environment in which Canadian water agencies operate, some of these benefits-especially those external to the agency or those that may accrue to the agency in future time periods- may not be fully counted when agencies decide on leak detection efforts. Our analysis suggests potential reforms to promote increased efforts for leak detection: adoption of a Canada-wide goal of universal water metering; development of full-cost accounting and, pricing for water supplies; and co-operation amongst the provinces to promulgate standards for leak detection efforts and provide incentives to promote improved efficiency and rational investment decision-making.
Resumo:
The present study is an attempt to address issues related to sediment properties like texture, mineralogy and geochemistry as well as water quality of two important rivers of central Kerala-the Periyar and the Chalakudy rivers. The main objectives of the study are to investigate the textural and mineralogical characteristics as well as transportation and depositional mechanisms of the sediments of Periyar and Chalakudy rivers, to find out the geochemical variability of organic carbon, phosphorus and certain major (Na,K,Ca and Mg) and minor/trace(Mn,Pb,Ni,Cr, and Zn) elements in the bulk sediments and mud fraction of these rivers, to evaluate the status of heavy metal pollution registered in the sediments of these rivers, to assess the physico-chemical characteristics and water quality of Periyar and Chalakudy rivers and to estimate the dissolved nutrient flux through the Periyar and Chalakudy rivers into the receiving coastal waters. The granulometric characteristics as well as statistical parameters of the sediments of Periyar and Chalakudy rivers depend on the flow pattern controlled by the gradient of the terrain. Compared to Periyar, fluctuations in the dispersal of particles are more in Chalakudy river. In Periyar river, the P and Fe in bulk sediments show a positive correlation with C-org, while in Chalakudy river, both the elements are related to THM concentration. In general, C-org, Fe and P Shows an increasing trend downstream. In Periyar river, the P and Fe in bulk sediments show a positive correlation with C-org, while in Chalakudy river, both the elements are related to THM concentration. Among these two rivers, the pollution of water is several fold higher in Periyar river due to influx due to influx of considerable quantity of liquid and solid wastes of industrial/domestic/urban origin. Nutrient analysis reveals 2-3 times increase in N and P during monsoon season whereas SiO2-Si shows a decreasing trend.
Resumo:
The extraction and use of metals has been the mainstay for the sustained development and progress of a nation. Metals, though fairly stable in the natural environment are found in trace quantities in water bodies. Attention has therefore been focused to identify the metals that impair the water quality. In the last few decades the concern about the fate of these metals in the aquatic system has been gaining momentum, particularly in the industrial belts. The disasters caused by metal poisoning in recent times have prompted an indepth study of the interaction of metals with aquatic biota. Kerala, basically an agriculture oriented state has witnessed the upsurgence of various industries as a part of the nationwide economic development programme. Cochin has been identified as the industrial capital of the state.The present study is an attempt towards a better understanding of the metal-phytoplankton interactions with special reference to the physiological changes in the species. various parameters such as temperature, salinity, pH, nutrients, number of cells, photosynthetic pigments, carbohydrates, protein and lipid are studied to highlight the complexity of metal..phytoplankton interaction