993 resultados para Valence band offset
Resumo:
A series of D-pi-A-pi-D type of near-infrared (NIR) fluorescent compounds based on benzobis(thia diazole) and its selenium analogues were synthesized and fully characterized by H-1 and C-13 NMR, high-resolution mass spectrometry, and elemental analysis. The absorption fluorescence, and electrochemical properties were also studied. Photoluminescence of these chromophores ranges from 900 to 1600 nm and their band gaps are between 1.19 and 0.56 eV.
Resumo:
A solution-phase approach to synthesize four kinds of mixed-valence, transition metal compounds nanotube is described. The approach is based on the self-assembly of siloxane sol. The resulted production of mixed-valence, transition metal compounds share a common structural characteristic of tubular geometrical morphology, at least for the ones we studied. The results demonstrate that the synthesis strategy can be a general route for preparation of compound nanotubes. In addition, the size control of nanotubular materials can be easily achieved through varying the ionic strength of solution. Based on the strategy, the diameters of ultrathin Ru-Fe nanotubes can be easily tuned between 100 nm and 800 nm.
Resumo:
We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB2 (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB2 might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation.
Resumo:
The reaction of Cu(BF4)(2) with pyridine-2,6-dicarboxylic acid (H(2)pydc) and trans-1,2-bis(4-pyridyl)ethylene (bpe) under hydrothermal conditions afforded a porous mixed-valence (CuCuII)-Cu-I coordination polymer. Coexistence of tetrameric and decameric water clusters within the channels of the complex leads to a novel water chain. The metal-organic framework provides both hydrophilic and hydrophobic environments for stabilizing the clusters and retains its integrity upon dehydration and rehydration.
Resumo:
A new compound, [NH4](2)[Zn(phen)(3)](2)[Zn(phen)(2)(H2O)(2)][V16O38(Cl)] (.) 5H(2)O (1), was synthesized in the hydrothermal condition. The "naked" [V16O38(Cl)](8-) is the first observation with host shell structure in polyoxovanadate chemistry.
Resumo:
NO decomposition reaction was investigated over La2-xThxCuO4, in which the valence of copper was controlled by Th substitution and was characterized by XPS measurement. A close correlation between the valence of copper and the activity was observed. The activity increased with the decrease of the average oxidation number of copper, and increased with the increase of Cu+ content, suggesting that the transition metal with low valence (Cu+) is active for the reaction in the present cases.
Resumo:
The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2-xLaxMnMoO6(0 <= x <= 1). The compounds have a monoclinic structure (space group P2(1)/n) and the cell volume expands monotonically with La doping. The T-C and the magnetic moment rise and the cusp-like transition temperature below which the magnetic frustration occurs shifts to high temperature as x increases. With La doping, electrical resistivity of Sr2-xLaxMnMoO6 decreases only at low doping levels (x <= 0.2); while at high doping levels (0.8 <= x <= 1), electrical resistivity tends to increase greatly. The results suggest that the competition between band filling effect and steric effect coexists in the whole doping range, and the formation of ferrimagnetic interactions is not simply at the expense of antiferromagnetic interactions.
Resumo:
Novel composite resins possessing good luminescent properties have been synthesized through a free radical copolymerization of styrene, alpha-methylacrylic acid and the binary or ternary complexes of lanthanide ions (Eu3+ and Tb3+). These polymer-based composite resins not only possess good transparency and mechanical performance but also exhibit an intense narrow band emission of lanthanide complexes under UV excitation. We characterized the molecular structure, physical and mechanical performance, and luminescent properties of the composite resins. Spectra investigations indicate that alpha-methyl-acrylic acid act as both solubilizer and ligand. Photoluminescence measurements indicate that the lanthanide complexes show superior emission lines and higher intensities in the resin matrix than in the corresponding pure complex powders, which can be attributed to the restriction of molecular motion of complexes by the polymer chain networks and the exclusion of water molecules from the complex. We also found that the luminescence intensity decreased with increasing content of alpha-methylacrylic acid in the copolymer system. The lifetime of the lanthanide complexes also lengthened when they were incorporated in the polymer matrix. In addition, we found that the relationships between emission intensity and Tb (Eu) content exhibit some extent of concentration quenching.
Resumo:
The energy difference DeltaE between the spin-allowed and spin-forbidden states of Tb3+ in crystals is studied. The environmental factor he representing the character of the host is redefined by using the chemical band of complex crystals. The relationship between h(e) and DeltaE is found to be a linear relation. The results show that the energy difference between the spin-forbidden and spin-allowed states for Tb3+ ions in crystals can be predicted from the environmental factor.
Resumo:
The optical properties of rare earth ions-activated barium orthophosphate phosphors, Ba-3(PO4)(2):RE (RE = Ce3+, Sm3+, Eu3+, Eu2+, and Tb3+), were investigated in vacuum ultraviolet (VLTV)-Vis range. A band-band transition Of PO43- in Ba-3(PO4)(2) is observed in the region of 150-170 nm. The partial reduction of Eu3+ to Eu2+ was observed and confirmed by luminescent spectra under the VUV-UV excitation. It is proposed that the electronegative defects that formed by aliovalent substitution of Eu3+ on the Ba2+ site in the host are responsible for the reduction process.
Resumo:
The VUV-UV spectra of rare earth ions activated calcium borophosphate, CaBPO5:RE (RE = Ce3+, sm(3+), Eu2+, Eu3+, Tb3+ and Dy3+) were determined. The bands at about 155 nm in the VUV excitation spectra are attributed to the host lattice absorptions. The bands at 166 and 190 nm for the sample CaBPO5:Sm have been considered as related to the f-d transition and the charge transfer band (CTB) of Sm3+ ions, and the band at 169 nm for the sample CaBPO5:Dy is assumed to be connected with the f-d transition of the Dy3+ ions in CaBPO5. The partial reduction of Eu3+ CaBPO5:Eu prepared by high temperature solid state reaction in air is confirmed by the VUV-UV spectra.
Resumo:
By using the average band-gap model, the chemical bond properties of (La1-x, M-x)(2)CuO4(M=Ba, Sr) were calculated. The calculated covalencies for Cu-O and La-O bond in the compounds are 0.3 and 0.03 respectively. Mossbauer isomer shifts of Fe-57 doped in La2CuO4 and Sn-119 doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in Fe-57 and Sn-119 doped La2CuO4.
Resumo:
The measurements of VUV-UV photoluminescence emission (PL) and photoluminescence excitation (PLE) spectra of rare earth ions activated strontium orthophosphate [Sr-3(PO4)(2):RE, RE = Ce, Sm, Eu, Tb] are performed. Whenever the samples are excited by VUV or UV light, the typical emission of Ce-3+,Ce- Sm3+, Eu3+, Eu2+ and Tb3+ ions can be observed in PL spectra, respectively. The charge transfer bands (CTBs) of Sm3+ and Eu3+ are found, respectively, peaking at 206 and 230nm. The absorption bands peaking in the region of 150-160 nm are assigned to the host lattice sensitization bands, i.e., the band-to-band transitions of PO43- grouping in Sr-3(PO4)(2). It is speculated that the first f-d transitions of Sm3+ (Eu3+), and the CTB of Tb3+ are, respectively, located around 165 (14 3) and 167 urn by means of VUV-UV PLE spectra and relational empirical formula, these f-d transitions or CT bands are included in the bands with the maxima at 150-160 nm, respectively. The valence change of europium from trivalent to divalent in strontium orthophosphate prepared in air is observe by VUV-UV PL and PLE spectra.