980 resultados para Triton X-114


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of zinc cation between crystallographically nonequivalent positions in ZnFe204 has been determined by anomalous X-ray scattering near the Zn K absorption edge. Measured intensity ratio with two energies close to the edge can be quantitatively explained only by assigning all zinc cations to the tetrahedral position in the approximately cubic close packed array of oxygen ions. A similar conclusion has also been reached for ZnxFe3-x04 solid solutions with x = 0.73, 0.54 and 0.35 employing the improved X-ray method. This is consistent with the EXAFS results which indicate an almost unchanged environmental structure around zinc cation in these solid solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local structural information in the near-neighbor region of superionic conducting glass (AgBr)0.4(Ag2O)0.3(GeO2)0.3 has been estimated from the anomalous X-ray scattering (AXS) measurements using Ge and Br K absorption edges. The possible atomic arrangements in the near-neighbor region of this glass were obtained by coupling the results with the least-squares variational method so as to reproduce two differential intensity profiles for Ge and Br as well as the ordinary scattering profile. The coordination number of oxygen around Ge is found to be 3.6 at a distance of 0.176 nm, suggesting the GeO4 tetrahedral unit as the probable structural entity in this glass. Moreover, the coordination number of Ag around Br is estimated as 6.3 at a distance of 0.284 nm, suggesting an arrangement similar to that in crystalline AgBr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to identify the dominant mechanism of ionic conduction, the electrical conductivity and ionic mobility of the glasses (AgX)0.4(Ag2O)0.3(GeO2)0.3 (X = I, Br, Cl) were measured separately in the temperature range from 293 to 393 K by coupling the AC technique with the TIC method. Electronic conductivity was also measured at 293 K by the Wagner polarization method. The total electrical conductivity of these glasses was found to be as high as 10-1 Ω-1 m-1, and the mobility about 10-6 m2 V-1 s-1. The variation of total electrical conductivity and mobility at constant temperature and composition with the type of halide occurred in the sequence, Cl < Br < I. For each composition, both conductivity and mobility increased with temperature. The mobile ion concentration was found to be about 1023 m-3 at 293 K, and it was insensitive to the type of halide as well as temperature. The results suggest that the change in ionic conductivity with the temperature and the type of halide present is mainly attributable to the change in ionic mobility rather than carrier concentration. Moreover, the electronic conductivity was found to be about 10-6 Ω-1 m-1 at 293 K. Thus, the electronic contribution to the total conductivity is negligibly small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure, thennal expansion and electrical conductivity of the solid solutions YOgCao.2Fel-x MnxOJ+c5 (0 ~ x ~ 1.0) were investigated. All compositions had the GdFeOrtype orthorhombic perovskite structure with trace amounts of a second phase present in case of x = 0.8 and 1.0. The lattice parameters were detennined at room tempe'rature by using X-ray powder diffraction (XRPD). The pseudocubic lattice constant decreased with increasing x. The average I inear thermal expansion coefficient (anv) in the temperature range from 673 to 973 K showed negligible change with x up to x = 0.4. The thennal expansion curve for x = I had a slope approaching zero in the temperature range from 648 to 948 K. The calculated activation energy values for electrical conduction indicate that conduction occurs primarily by the small polaron hopping mechanism. The drastic drop in electrical conductivity for a small addition of Mn (0 ~ x ~ 0.2) is caused by the preferential fonnation of Mn4t ion~ (rather than Fe4 +) which act as carrier traps. This continues till the charge compensation for the divalent ions on the A-site is complete. The results indicate that with further increase in manganese content (beyond x =0.4) in the solid solutions, there is an increase in exc :::ss oxygen and consequently, a small increase in Mn'll il>I1~, which are charge compensated by the formation of cation vancancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the one-way relay aided MIMO X fading Channel where there are two transmitters and two receivers along with a relay with M antennas at every node. Every transmitter wants to transmit messages to every other receiver. The relay broadcasts to the receivers along a noisy link which is independent of the transmitters channel. In literature, this is referred to as a relay with orthogonal components. We derive an upper bound on the degrees of freedom of such a network. Next we show that the upper bound is tight by proposing an achievability scheme based on signal space alignment for the same for M = 2 antennas at every node.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radially-homogeneous and single-phase InAsxSb(1−x) crystals, up to 5.0 at. % As concentration, have been grown using the rotatory Bridgman method. Single crystallinity has been confirmed by x-ray and electron diffraction studies. Infrared transmission spectra show a continuous decrease in optical energy gap with the increase of arsenic content in InSb. The measured values of mobility and carrier density at room temperature (for x = .05) are 5.6×104 cm2/V s and 2.04×1016 cm−3, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized La0.83Na0.11MnO2.93 by heating La2O3 and MnCO3 in NaCl melt at 900 °C. The exact composition was arrived by analyzing each ion by an independent chemical method. The compound crystallized in a rhombohedral structure and showed an insulator-to-metal transition at 290 K. Epitaxial thin films were fabricated on LaAlO3 (100) using a pulsed laser deposition technique. The film also showed an insulator-to-metal transition at 290 K. Magnetoresistance [ΔR/R0 = (RH−R0)/R0] was −71% near the insulator-to-metal transition temperature of 290 K at 6 T magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature modulated alternating differential scanning calorimetric studies show that Se rich Ge0.15Se0.85−xAgx (0 x 0.20) glasses are microscopically phase separated, containing Ag2Se phases embedded in a Ge0.15Se0.85 backbone. With increasing silver concentration, Ag2Se phase percolates in the Ge–Se matrix, with a well-defined percolation threshold at x = 0.10. A signature of this percolation transition is shown up in the thermal behavior, as the appearance of two exothermic crystallization peaks. Density, molar volume, and microhardness measurements, undertaken in the present study, also strongly support this view of percolation transition. The superionic conduction observed earlier in these glasses at higher silver proportions is likely to be connected with the silver phase percolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InAsxSb1−x alloys show a strong bowing in the energy gap, the energy gap of the alloy can be less than the gap of the two parent compounds. The authors demonstrate that a consequence of this alloying is a systematic degradation in the sharpness of the absorption edge. The alloy disorder induced band-tail (Urbach tail) characteristics are quantitatively studied for InAs0.05Sb0.95.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although Al(1-x)Ga(x)N semiconductors are used in lighting, displays and high-power amplifiers, there is no experimental thermodynamic information on nitride solid solutions. Thermodynamic data are useful for assessing the intrinsic stability of the solid solution with respect to phase separation and extrinsic stability in relation to other phases such as metallic contacts. The activity of GaN in Al(1-x)Ga(x)N solid solution is determined at 1100 K using a solid-state electrochemical cell: Ga + Al(1-x)Ga(x)N/Fe, Ca(3)N(2)//CaF(2)//Ca(3)N(2), N(2) (0.1 MPa), Fe. The solid-state cell is based on single crystal CaF(2) as the electrolyte and Ca(3)N(2) as the auxiliary electrode to convert the nitrogen chemical potential established by the equilibrium between Ga and Al(1-x)Ga(x)N solid solution into an equivalent fluorine potential. Excess Gibbs free energy of mixing of the solid solution is computed from the results. Results suggest an unusual mixing behavior: a mild tendency for ordering at three discrete compositions (x = 0.25, 0.5 and 0.75) superimposed on predominantly positive deviation from ideality. The lattice parameters exhibit slight deviation from Vegard's law, with the a-parameter showing positive and the c-parameter negative deviation. Although the solid solution is stable in the full range of compositions at growth temperatures, thermodynamic instability is indicated at temperatures below 410 K in the composition range 0.26 <= x <= 0.5. At 355 K, two biphasic regions appear, with terminal solid solutions stable only for 0 <= x <= 0.26 and 0.66 <= x <= 1. The range of terminal solid solubility reduces with decreasing temperature. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetate kinase (AckA) catalyzes the reversible transfer of a phosphate group from acetyl phosphate to ADP, generating acetate and ATP, and plays a central role in carbon metabolism. In the present work, the gene corresponding to AckA from Salmonella typhimurium (StAckA) was cloned in the IPTG-inducible pRSET C vector, resulting in the attachment of a hexahistidine tag to the N-terminus of the expressed enzyme. The recombinant protein was overexpressed, purified and crystallized in two different crystal forms using the microbatch-under-oil method. Form I crystals diffracted to 2.70 angstrom resolution when examined using X-rays from a rotating-anode X-ray generator and belonged to the monoclinic space group C2, with unit-cell parameters a = 283.16, b = 62.17, c = 91.69 angstrom, beta = 93.57 degrees. Form II crystals, which diffracted to a higher resolution of 2.35 angstrom on the rotating-anode X-ray generator and to 1.90 angstrom on beamline BM14 of the ESRF, Grenoble, also belonged to space group C2 but with smaller unit-cell parameters (a = 151.01, b = 78.50, c = 97.48 angstrom, beta = 116.37 degrees). Calculation of Matthews coefficients for the two crystal forms suggested the presence of four and two protomers of StAckA in the asymmetric units of forms I and II, respectively. Initial phases for the form I diffraction data were obtained by molecular replacement using the coordinates of Thermotoga maritima AckA (TmAckA) as the search model. The form II structure was phased using a monomer of form I as the phasing model. Inspection of the initial electron-density maps suggests dramatic conformational differences between residues 230 and 300 of the two crystal forms and warrants further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interesting topic for quite some time is an intermediate phase observed in chalcogenide glasses, which is related to network connectivity and rigidity. This phenomenon is exhibited by Si-Te-In glasses also. It has been addressed here by carrying out detailed thermal investigations by using Alternating Differential Scanning Calorimetry technique. An effort has also been made to determine the stability of these glasses using the data obtained from different thermodynamic quantities and crystallization kinetics of these glasses. Electrical switching behavior by recording I-V characteristics and variation of switching voltages with indium composition have been studied in these glasses for phase change memory applications. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The band offsets in InN/p-Si heterojunctions are determined by high resolution x-ray photoemission spectroscopy. The valence band of InN is found to be 1.39 eV below that of Si. Given the bandgap of 0.7 eV for InN, a type-III heterojunction with a conduction band offset of 1.81 eV was found. Agreement between the simulated and experimental data obtained from the heterojunction spectra was found to be excellent, establishing that the method of determination was accurate. The charge neutrality level (CNL) model provided a reasonable description of the band alignment of the InN/p-Si interface and a change in the interface dipole by 0.06 eV was observed for InN/p-Si interface.