959 resultados para Transgenic Mouse


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background In rheumatoid arthritis (RA), non-professional antigen presenting cells (APCs) such as fi broblast-like synoviocytes (FLS) can express MHC class II (MHCII) molecules and function as non-professional APCs in vitro.Objective To examine the regulation of MHCII expression in FLS and to investigate the role of FLS as non-professional APCs in collagen-induced arthritis (CIA). Methods Expression of MHCII, CIITA and Ciita isoforms pI, pIII and pIV was examined by RT-qPCR, immunohistochemistry and fl ow cytometry in human synovial tissues, arthritic mouse joints and human as well as mouse FLS. CIA was induced in mice knockout for the isoform IV of Ciita (pIV-/-), in pIV-/- mice transgenic for CIITA in the thymus (pIV-/- K14 CIITA) and in control littermates in the DBA/1 background by immunising with bovine collagen type II (CII) in complete Freund's adjuvant.Results HLA-DRA, total CIITA and CIITA pIII mRNA levels were signifi cantly increased in the synovial tissues from RA compared to osteoarthritis patients. Human FLS expressed surface MHCII via CIITA pIII and pIV, while MHCII expression in murine FLS was entirely mediated by pIV. pIV-/- mice lacked both inducible MHCII expression on non-professional APCs including FLS, and in the thymic cortex. The thymic defect in pIV-/- mice impaired CD4+ positive selection, thus protecting pIV-/- mice from CIA by preventing CD4+ T cells immune responses against CII and blocking the release of IFN-γ and IL-17 in ex vivo stimulated lymph node cells. The production of T dependent, arthritogenic anti-CII antibodies was also impaired in pIV-/- mice. A normal thymic expression of MHCII and CD4+ T cell repertoire was obtained in pIV-/- K14 CIITA Tg mice. Immune responses against CII were restored in pIV-/- K14 CIITA Tg mice, as well as the arthritis incidence and clinical severity despite the lack of MHCII expression by mouse FLS. At histology, infl ammation andneutrophils infi ltration scores were not reduced in pIV-/- K14 CIITA Tg mice, while the bone erosion score was signifi cantly lower than in controls.Conclusion Over expression of MHCII is tightly correlated with CIITA pIII in the arthritic human synovium. MHCII is induced via CIITA pIII and pIV in human FLS. In the mouse, MHCII expression in the thymic cortex and in FLS is strictly dependent upon Ciita pIV. The lack of Ciita pIV in the periphery of pIV-/- K14 CIITA Tg mice lowered the bone erosion score but did not signifi cantly protect from infl ammation and autoimmune responses in CIA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Dysregulation of voltage-gated sodium channels (Na(v)s) is believed to play a major role in nerve fiber hyperexcitability associated with neuropathic pain. A complete transcriptional characterization of the different isoforms of Na(v)s under normal and pathological conditions had never been performed on mice, despite their widespread use in pain research. Na(v)s mRNA levels in mouse dorsal root ganglia (DRG) were studied in the spared nerve injury (SNI) and spinal nerve ligation (SNL) models of neuropathic pain. In the SNI model, injured and non-injured neurons were intermingled in lumbar DRG, which were pooled to increase the tissue available for experiments. RESULTS: A strong downregulation was observed for every Na(v)s isoform expressed except for Na(v)1.2; even Na(v)1.3, known to be upregulated in rat neuropathic pain models, was lower in the SNI mouse model. This suggests differences between these two species. In the SNL model, where the cell bodies of injured and non-injured fibers are anatomically separated between different DRG, most Na(v)s were observed to be downregulated in the L5 DRG receiving axotomized fibers. Transcription was then investigated independently in the L3, L4 and L5 DRG in the SNI model, and an important downregulation of many Na(v)s isoforms was observed in the L3 DRG, suggesting the presence of numerous injured neurons there after SNI. Consequently, the proportion of axotomized neurons in the L3, L4 and L5 DRG after SNI was characterized by studying the expression of activating transcription factor 3 (ATF3). Using this marker of nerve injury confirmed that most injured fibers find their cell bodies in the L3 and L4 DRG after SNI in C57BL/6 J mice; this contrasts with their L4 and L5 DRG localization in rats. The spared sural nerve, through which pain hypersensitivity is measured in behavioral studies, mostly projects into the L4 and L5 DRG. CONCLUSIONS: The complex regulation of Na(v)s, together with the anatomical rostral shift of the DRG harboring injured fibers in C57BL/6 J mice, emphasize that caution is necessary and preliminary anatomical experiments should be carried out for gene and protein expression studies after SNI in mouse strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microtubule-associated protein 1A (MAP1A) is essential during the late differentiation phase of neuronal development. Here, we demonstrated the presence of two MAP1A isoforms with a differential spatial distribution in the adult mouse barrel cortex. Antibody A stained MAP1A in pyramidal and stellate cells, including dendrites that crossed layer IV in the septa between barrels. The other antibody, BW6 recognized a MAP1A isoform that was mainly confined to the barrel hollow and identified smaller caliber dendrites. Previously, an interaction of MAP1A and the serotonin 5-hydroxytryptamine 2A (5-HT(2A)) receptor was shown in the rat cortex. Here, we identified, by double-immunofluorescent labeling, MAP1A isoform and serotonin 5-HT(2A) receptor distribution. MAP1A co-localized mainly with 5-HT(2A) receptor in larger apical dendrites situated in septa. This differential staining of MAP1A and a serotonin receptor in defined barrel compartments may be due to changes in the expression or processing of MAP1A during dendritic transport as a consequence of functional differences in processing of whisker-related sensory input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Cells in tissues and organs coordinate their activities by communicating with each other through intercellular channels named gap junctions. These channels are conduits between the cytoplasmic compartments of adjacent cells, allowing the exchange of small molecules which may be crucial for hormone secretion. Renin is normally secreted in a regulated manner by specific cells of the juxtaglomerular apparatus located within the renal cortex. Gap junctional communication may be requisite to maintain an accurate functioning in coordination of renin-producing cells, more especially as renin is of paramount importance for the control of blood pressure. Connexin43 (Cx43) and Cx40 form gap junctions that link in vivo the cells of the juxtaglomerular apparatus. Cx43 links the endothelial cells, whereas gap junctions made of Cx40 connect the endothelial cells, the renin secreting cells, as well as the endothelial cells of to the renin-secreting cells of the afferent arteriole. The observation that loss of Cx40 results in chronic hypertension associated with altered vasomotion and signal conduction along arterioles, has lead us to suggest that connexins may contribute to control blood pressure by participating to the integration of various mechanical, osmotic and electrochemical stimuli involved in the control of renin secretion and by mediating the adaptive changes of the vascular wall induced by elevated blood pressure and mechanical stress. We therefore postulated that the absence of Cx40 could have deleterious effects on the coordinated functioning of the renin-containing cells, hence accounting for hypertension. In the first part of my thesis, we reported that Cx40-deficient mice (Cx40) are hypertensive due to increased plasma renin levels and numbers of renin-producing cells. Besides, we demonstrated that prostaglandins and nitric oxide, which are possible mediators in the regulation of renin secretion by the macula densa, exert a critical role in the mechanisms controlling blood pressure ín Cx40 knockout hypertensive mice. In view of previous studies that stated avessel-specifc increase in the expression of Cx43 during renin-dependent hypertension, we hypothesized that Cx43 channels are particularly well-matched to integrate the response of cells constituting the vascular wall to hypertensive conditions. Using transgenic mice in which Cx43 was replaced by Cx32, we revealed that the replacement of Cx43 by Cx32 is associated with decreased expression and secretion of renin and prevent the renin-dependent hypertension which is normally induced in the 2K1C model. To gain insights into the regulation of connexins in two separate tissues exposed to the same fluid pressure, the second part of my thesis work was dedicated to the study of the impact of chronic hypertension and related hypertrophy on the expression of the cardiovascular connexins (Cx40, Cx37, Cx43 and Cx45) in mouse aorta and heart. Our results documented that the expression of connexins is differentially regulated in mouse aorta. according to the models of hypertension. Thus, blood pressure induces mechanical forces that differentially alter the expression of vascular connexins in order to respond to an adaptation of the aortic wall observed under pathological conditions. Altogether these data provide the first evidences that intercellular communication mediated by gap junctions is required for a proper renin secretion from the juxtaglomerular apparatus in order to control blood pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene correction at the site of the mutation in the chromosome is the absolute way to really cure a genetic disease. The oligonucleotide (ODN)-mediated gene repair technology uses an ODN perfectly complementary to the genomic sequence except for a mismatch at the base that is mutated. The endogenous repair machinery of the targeted cell then mediates substitution of the desired base in the gene, resulting in a completely normal sequence. Theoretically, it avoids potential gene silencing or random integration associated with common viral gene augmentation approaches and allows an intact regulation of expression of the therapeutic protein. The eye is a particularly attractive target for gene repair because of its unique features (small organ, easily accessible, low diffusion into systemic circulation). Moreover therapeutic effects on visual impairment could be obtained with modest levels of repair. This chapter describes in details the optimized method to target active ODNs to the nuclei of photoreceptors in neonatal mouse using (1) an electric current application at the eye surface (saline transpalpebral iontophoresis), (2) combined with an intravitreous injection of ODNs, as well as the experimental methods for (3) the dissection of adult neural retinas, (4) their immuno-labelling, and (5) flat-mounting for direct observation of photoreceptor survival, a relevant criteria of treatment outcomes for retinal degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As in cancer biology, in wound healing there is a need for objective staging systems to decide for the best treatment and predictors of outcome. We developed in the diabetic (db/db) wound healing model, a staging system, the "wound watch," based on the quantification of angiogenesis and cell proliferation in open wounds. In chronic wounds, there is often a lack of cellular proliferation and angiogenesis that leads to impaired healing. The wound watch addresses this by quantifying the proliferative phase of wound healing in two dimensions (cellular division and angiogenesis). The results are plotted in a two-dimensional graph to monitor the course of healing and compare the response to different treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Notch signaling regulates multiple differentiation processes and cell fate decisions during both invertebrate and vertebrate development. Numb encodes an intracellular protein that was shown in Drosophila to antagonize Notch signaling at binary cell fate decisions of certain cell lineages. Although overexpression experiments suggested that Numb might also antagonize some Notch activity in vertebrates, the developmental processes in which Numb is involved remained elusive. RESULTS: We generated mice with a homozygous inactivation of Numb. These mice died before embryonic day E11.5, probably because of defects in angiogenic remodeling and placental dysfunction. Mutant embryos had an open anterior neural tube and impaired neuronal differentiation within the developing cranial central nervous system (CNS). In the developing spinal cord, the number of differentiated motoneurons was reduced. Within the peripheral nervous system (PNS), ganglia of cranial sensory neurons were formed. Trunk neural crest cells migrated and differentiated into sympathetic neurons. In contrast, a selective differentiation anomaly was observed in dorsal root ganglia, where neural crest--derived progenitor cells had migrated normally to form ganglionic structures, but failed to differentiate into sensory neurons. CONCLUSIONS: Mouse Numb is involved in multiple developmental processes and required for cell fate tuning in a variety of lineages. In the nervous system, Numb is required for the generation of a large subset of neuronal lineages. The restricted requirement of Numb during neural development in the mouse suggests that in some neuronal lineages, Notch signaling may be regulated independently of Numb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor gamma (PPARgamma) is abundantly expressed in adipocytes, and plays an important role in adipocyte differentiation and fat accretion. It is a heterodimeric partner of the retinoid X receptors alpha, beta and gamma, which are also expressed in the adipose tissue. As lethality of PPARgamma(-/-) and RXRalpha(-/-) mouse fetuses precluded the analysis of PPARgamma and RXRalpha functions in mature adipocytes, we generated RXRalpha(ad-/-) and PPARgamma(ad-/-) mice, in which RXRalpha and PPARgamma are selectively ablated in adult adipocytes, respectively. Even though the adiposity of RXRalpha(ad-/-) mice is similar to that of control mice when fed a regular diet, they are resistant to chemically and dietary-induced obesity. However, mature adipocytes lacking either both RXRalpha and RXRgamma or PPARgamma die, and are replaced by newly formed adipocytes. Thus, in adipocytes, RXRalpha is essential for lipogenesis, but RXRgamma can functionally replace RXRalpha for the adipocyte vital functions exerted by PPARgamma/RXR heterodimers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmid DNA and adenovirus vectors currently used in cardiovascular gene therapy trials are limited by low efficiency and short-lived transgene expression, respectively. Recombinant adeno-associated virus (AAV) has recently emerged as an attractive vector for cardiovascular gene therapy. In the present study, we have compared AAV and adenovirus vectors with respect to gene transfer efficiency and the duration of transgene expression in mouse hearts and arteries in vivo. AAV vectors (titer: 5 x 10(8) transducing units (TU)/ml) and adenovirus vectors (1.2 x 10(10) TU/ml) expressing a green fluorescent protein (EGFP) gene were injected either intramyocardially (n=32) or intrapericardially (n=3) in CD-1 mice. Hearts were harvested at varying time intervals (3 days to 1 year) after gene delivery. After intramyocardial injection of 5 microl virus stock solution, cardiomyocyte transduction rates with AAV vectors were 4-fold lower than with adenovirus vectors (1.5% (range: 0.5-2.6%) vs. 6.2% (range: 2.7-13.7%); P<0.05), but similar to titer-matched adenovirus vectors (0.7%; range: 0.2-1.2%). AAV-mediated EGFP expression lasted for at least 1 year. AAV vectors instilled into the pericardial space transduced epicardial myocytes. Arterial gene transfer was studied in mouse carotids (n=26). Both vectors selectively transduced endothelial cells after luminal instillation. Transduction rates with AAV vectors were 8-fold lower than with adenovirus vectors (2.0% (range: 0-3.2%) vs. 16.2% (range: 8.5-20.2%); P<0.05). Prolonged EGFP expression was observed after AAV but not adenovirus-mediated gene transfer. In conclusion, AAV vectors deliver and express genes for extended periods of time in the myocardium and arterial endothelium in vivo. AAV vectors may be useful for gene therapy approaches to chronic cardiovascular diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting. RESEARCH DESIGN AND METHODS: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS: Pancreatic beta-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor kappaB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo beta-cell apoptosis. CONCLUSIONS: Fragment N efficiently increases the overall resistance of beta-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined sequence variation in the mitochondrial cytochrome b gene (1140 bp, n = 73) and control region (842-851 bp, n = 74) in the Eurasian harvest mouse (Micromys minutus (Pallas, 1771)), with samples drawn from across its range, from Western Europe to Japan. Phylogeographic analyses revealed region-specific haplotype groupings combined with overall low levels of inter-regional genetic divergence. Despite the enormous intervening distance, European and East Asian samples showed a net nucleotide divergence of only 0.36%. Based on an evolutionary rate for the cytochrome b gene of 2.4%(.)(site(.)lineage(.)million years)(-1), the initial divergence time of these populations is estimated at around 80 000 years before present. Our findings are consistent with available fossil evidence that has recorded repeated cycles of extinction and recolonization of Europe by M. minutus through the Quaternary. The molecular data further suggest that recolonization occurred from refugia in the Central to East Asian region. Japanese haplotypes of M. minutus, with the exception of those from Tsushima Is., show limited nucleotide diversity (0.15%) compared with those found on the adjacent Korean Peninsula. This finding suggests recent colonization of the Japanese Archipelago, probably around the last glacial period, followed by rapid population growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Islet-brain 1 (IB1) was recently identified as a DNA-binding protein of the GLUT2 gene promoter. The mouse IB1 is the rat and human homologue of the Jun-interacting protein 1 (JIP-1) which has been recognized as a key player in the regulation of c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways. JIP-1 is involved in the control of apoptosis and may play a role in brain development and aging. Here, IB1 was studied in adult and developing mouse brain tissue by in situ hybridization, Northern and Western blot analysis at cellular and subcellular levels, as well as by immunocytochemistry in brain sections and cell cultures. IB1 expression was localized in the synaptic regions of the olfactory bulb, retina, cerebral and cerebellar cortex and hippocampus in the adult mouse brain. IB1 was also detected in a restricted number of axons, as in the mossy fibres from dentate gyrus in the hippocampus, and was found in soma, dendrites and axons of cerebellar Purkinje cells. After birth, IB1 expression peaks at postnatal day 15. IB1 was located in axonal and dendritic growth cones in primary telencephalon cells. By biochemical and subcellular fractionation of neuronal cells, IB1 was detected both in the cytosolic and membrane fractions. Taken together with previous data, the restricted neuronal expression of IB1 in developing and adult brain and its prominent localization in synapses suggest that the protein may be critical for cell signalling in developing and mature nerve terminals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similar to human chronic lymphocytic leukemia (CLL), the de novo New Zealand Black (NZB) mouse model has a genetically determined age-associated increase in malignant B-1 clones and decreased expression of microRNAs miR-15a and miR-16 in B-1 cells. In the present study, lentiviral vectors were employed in vivo to restore miR-15a/16, and both the short-term single injection and long-term multiple injection effects of this delivery were observed in NZB. Control lentivirus without the mir-15a/16 sequence was used for comparison. We found that in vivo lentiviral delivery of mir-15a/16 increased miR-15a/16 expression in cells that were transduced (detected by GFP expression) and in sera when compared with control lentivirus treatment. More importantly, mice treated with the miR-expressing lentivirus had decreased disease. The lentivirus had little systemic toxicity while preferentially targeting B-1 cells. Short-term effects on B-1 cells were direct effects, and only malignant B-1 cells transduced with miR-15a/16 lentivirus had decreased viability. In contrast, long-term studies suggested both direct and indirect effects resulting from miR-15a/16 lentivirus treatment. A decrease in B-1 cells was found in both the transduced and non-transduced populations. Our data support the potential use of systemic lentiviral delivery of miR-15a/16 to ameliorate disease manifestations of CLL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the coding sequence of SOX9 cause campomelic dysplasia (CD), a disorder of skeletal development associated with 46,XY disorders of sex development (DSDs). Translocations, deletions, and duplications within a ∼2 Mb region upstream of SOX9 can recapitulate the CD-DSD phenotype fully or partially, suggesting the existence of an unusually large cis-regulatory control region. Pierre Robin sequence (PRS) is a craniofacial disorder that is frequently an endophenotype of CD and a locus for isolated PRS at ∼1.2-1.5 Mb upstream of SOX9 has been previously reported. The craniofacial regulatory potential within this locus, and within the greater genomic domain surrounding SOX9, remains poorly defined. We report two novel deletions upstream of SOX9 in families with PRS, allowing refinement of the regions harboring candidate craniofacial regulatory elements. In parallel, ChIP-Seq for p300 binding sites in mouse craniofacial tissue led to the identification of several novel craniofacial enhancers at the SOX9 locus, which were validated in transgenic reporter mice and zebrafish. Notably, some of the functionally validated elements fall within the PRS deletions. These studies suggest that multiple noncoding elements contribute to the craniofacial regulation of SOX9 expression, and that their disruption results in PRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary sensory neurons in mouse dorsal root ganglia consist of diversified subpopulations which express distinct phenotypic characteristics such as substance P or calbindin D-28k. To determine whether neuronal phenotypes are altered or not in in vitro cultures carried out in a defined synthetic medium, dissociated dorsal root ganglion cells from newborn mice were grown in the alpha-modified minimum essential medium either supplemented with 10% fetal calf serum or serum-free. About 80% of the neurons survived after 5 days of culture in both media, but only 35% or 65% were rescued after 12 days in serum-free or fetal calf serum supplemented medium, respectively. The neuronal subpopulations expressing substance P or calbindin D-28k displayed similar morphological properties in both media and a higher resistance to culture conditions than the whole neuronal cell population, especially in serum-free medium. It is therefore concluded that a defined synthetic medium offers reproducible conditions to culture dorsal root ganglion cells for at least 5 days, stimulates the expression of substance P and enriches preferentially neuronal phenotypes expressing substance P or calbindin D-28k, for a longer period of culture.