882 resultados para Thermoplastic extrusion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The food industry is continually growing with new products becoming available every year. Extrusion combines a number of unit operations in one energy efficient rapid continuous process and can be used to produce a wide variety of snacks foods. The objective of this study was to evaluate the effect of extrusion temperature, screw speed, and amount of cassava leaf flour mixed with cassava starch on the physical properties of extruded snacks processed using a single screw extruder. A central composite rotational design, including three factors with 20 treatments, was used in the experimental design. Dependent variables included the expansion index, specific volume, color, water absorption index, and water solubility index. Among the parameters examined, the amount of cassava leaf flour and extrusion temperature showed significant effects on extruded snack characteristics. Mixtures containing 10% of cassava leaf flour extruded at 100 degrees C and 255 rpm shows favorable levels of expansion, color, water absorption index, and water solubility index.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thoracolumbar disk extrusion is the most common cause of extradural compression of the spinal cord in dogs. Myelography is one of the most commonly performed techniques for the diagnosis of this affection. This study aimed to evaluate the applicability and effectiveness of lumbar myelography in the diagnosis of thoracolumbar intervertebral disk extrusion in dogs, as well as its major complications. Twenty dogs were used in this study. Animals were included when neurological examination suggested thoracolumbar spine lesion, myelography was used as a complementary diagnostic method, and diagnosis of disk extrusion was surgically confirmed. The accuracy of the exam to predict location and lateralization of extruded disk material were evaluated, as well as complications associated to the procedure. Lumbar myelography exhibited 95% and 60% accuracy for location and lateralization of the lesion, respectively, with minimal complications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The competitiveness among global markets, the constant need for reducing manufacturing costs and also the growing environmental commitments are fueling the development of techniques for recovery residual parts generated by industrial processes. Among the various areas of a company, we highlight those that involve the processing of raw materials derived from oil, such as polymers (resins), which may take centuries to decompose in the environment and also present as a economic and environmentally strategic point. Thus, this study would examine the recovery of waste polypropylene, from the injection process of a major multinational in the field of home appliances through the recycling by a process comprising the milling, extrusion and chipping of waste material. Easy to deploy, this proposal aims to reduce levels negligible disposal (scrap) of these residues as well as the reintegration of the production process into pieces no visual and no structural importance, aimed at cutting costs and reducing environmental impacts caused. After the survey data in kilograms of waste material generated in a given period of time, and the study of changes in material properties, it would enable the reuse steadily in the injection process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this work is to report some problems that occur in the in the production of aluminum billets (series 6XXX) produced by the hot top process in the Alcoa aluminum Inc. The aluminum fabrication process is described from its first stage, since the mining until the reduction, smelting and treatment of the metal. One of the plant’s final product, are billets for clients that produce profiles by extrusion. The product’s final quality highly depends on the whole production process. Therefore it’s necessary to use good practices in the treatment of the metal, follow up its fabrication and control its thermal treatment, in order to meet the required standards to satisfy the clients. The billet’s production method and its variables will be detailed through temperature and casting speed, cone of water flow, cooling rate, duration of thermal treatment, degassing and metal “in line “filtering, in other words when it’s still found in its liquid state. The non-conformities of the process were studied by metallographic analysis, both macrostutural and microstructural that will be described and discussed in this work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naturally characterizes the human being the interference in the environment to ensure their survival and also convenience. After numerous environmental accidents caused by unbridled pursuit of this goal, the concern about providing for current needs without compromising the ability of the future generations to supply their own, gained space. In order to contribute to sustainable development the Life Cycle Assessment (LCA) was implemented. This tool is based on the concept that if the environmental impacts of a product or service are known, it is possible to take better decisions concerning its environmental aspects. The purpose of this research is to conduct the LCA of polyvinyl chloride (PVC), the world’s second most consumed thermoplastic. The methodology described in NBR ISO 14040 and NBR ISO 14044 was followed. As a result, the LCA of polyvinyl chloride produced in Brazil was obtained, and, therefore, the inventory of the product in question adapted to Brazilian reality. The research can be applied to various studies considering that actions were taken to ensure that it represents the Brazilian reality. Moreover, the procedures were described to guarantee the greatest transparency possible

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large part of hydraulic hoses is produced on a mandrel. The mandrel has longer length and circular profile being produced by extrusion of polyamide polymer, which in this case is imported, then the process is depending on the import process, which entails high shipping costs and fees. This work studies the production of recycled mandrel, using the mandrel that is out of dimensional to produce hoses. After the production of recycled mandrel mechanical tensile and hardness were performed both in the natural and recycled mandrel to compare them. It was observed that recycled mandrel presents the tensile properties and hardness superior to natural mandrel. Thus, this work will directly impact the company`s business ultimately reducing costs, reducing waste and reducing environmental impacts

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work polymeric composites reinforced with cotton fibers, from the textile industry, were developed in order to manufacture printed circuit boards. It was used expanded polystyrene (EPS) as a thermoplastic matrix by melting it. For the obtention of 10% and 15% of fiber volume fraction in cotton fibers composites, it was used wasted cotton fibers as an incentive of recycling and reusing of the domestic and industrial wastes as well as for Expanded Polystyrene(EPS). The mechanical properties of the composites were evaluated by tensile and flexural strength from standardized test methods. Composites were characterized by a Scanning Electron Microscopy (SEM), Thermogravimetry (TG/DTG), Differential Scanning Calorimetry (DSC) and dielectric analysis. The analysis of the results showed that fiber in the composite directly influenced in the thermal and mechanical properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work polystyrene composites reinforced with recycled sisal fibers were processed, in order to apply in the manufacture of printed circuit boards. A thermoplastic matrix of recycled polystyrene was used, this material came from waste expanded polystyrene (EPS) used in appliance's packages. Composites were prepared with 15% and 25% of sisal fibers. To obtain the composites, wasted EPS and natural sisal fibers were chosen, to encourage recycling and reuse of household waste and also the use of renewable resources. The composites were analyzed by standard tensile and flexural test, in order to verify the mechanical properties of the material. The characterization of the composite was done by scanning electron microscopy (SEM) , thermogravimetry (TGA / DTG) , differential scanning calorimetry (DSC) and dielectric analysis . The analysis of the results showed that the percentage of fibers in the composite influences directly the thermal and mechanical properties. Plates with a lower percentage of fibers showed superior properties at a higher percentage. The composite material obtained is easy to process and it's use is feasible for the confection of printed circuit boards, considering it's mechanical, thermal and insulative properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, plasma immersion ion implantation (PIII) treatments of carbon fibers (CFs) were performed in order to induce modifications of chemical and physical properties of the CF surface aimed to improve the performance of thermoplastic composite. The samples to be treated were immersed in nitrogen or air glow discharge plasma and pulsed at −3.0 kV for 2.0, 5.0, 10.0, and 15.0 min. After PIII processing, the specimens were characterized by atomic force microscopy (AFM), scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). After CFs treatments, the CF/Polypropylene (PP) composites were produced by hot pressing method. Surface morphology of as-received CFs exhibited some scratches aligned along the fibers due to the fiber manufacturing process. After both treatments, these features became deeper, and also, a number of small particles nonuniformly distributed on the fiber surface can be observed. These particles are product of CF surface sputtering during the PIII treatment, which removes the epoxy layer that covers as-received samples. AFM analyses of CF samples treated with nitrogen depicted a large increase of the surface roughness (Rrms value approximately six times higher than that of the untreated sample). The increase of the roughness was also observed for samples treated by air PIII. Raman spectra of all samples presented the characteristic D- and G-bands at approximately 1355 and 1582 cm−1, respectively. Analysis of the surface chemical composition provided by the XPS showed that nitrogen and oxygen were incorporated onto the surface. The polar radicals formed on the surface lead to increasing of the CF surface energy. Both the modification of surface roughness and the surface oxidation contributed for the enhancement of CF adhesion to the polymeric matrix. These features were confirmed ... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanostructured materials over the last decade have been increasing the variety of studies and research applications in many industries. From the understanding and manipulation of nanoscale is possible to obtain high-performance materials. One method, which has been very effective in obtaining of nanostructured composites, is the electrospinning, a technique that uses electrostatic forces to produce fibers from a polymer solution. By understanding and controlling of process conditions, such as solution viscosity, working distance, the velocity of the collector, applied voltage and others conditions, it is possible to obtain fibers in many different morphologies. This work aims to obtain nanostructured composites from polysulfone (PSU) a thermoplastic polymer with high oxidation resistance and good mechanical strength at high temperatures and carbon nanotubes (CNTs) that are excellent reinforcements for polymer materials, their mechanical resistance is greater than that of all known materials; using the electrospinning process via polymer solution. Were used polysulfone solutions, n,n-ndimetil acetamide (PSU / DMAc) and this same solution added of CNTs in order to obtain the nanofibers. In both cases were analyzed the effectiveness of the process from the analysis of fiber diameters, rheological behavior and infrared spectroscopy. The results obtained confirmed the efficiency of the electrospinning process to obtain polymeric fibers