875 resultados para Technological forecasting
Resumo:
Com o atual desenvolvimento industrial e tecnológico da sociedade, a presença de substâncias inflamáveis e/ou tóxicas aumentou significativamente em um grande número de atividades. A possível dispersão de gases perigosos em instalações de armazenamento ou em operações de transporte representam uma grande ameaça à saúde e ao meio ambiente. Portanto, a caracterização de uma nuvem inflamável e/ou tóxica é um ponto crítico na análise quantitativa de riscos. O objetivo principal desta tese foi fornecer novas perspectivas que pudessem auxiliar analistas de risco envolvidos na análise de dispersões em cenários complexos, por exemplo, cenários com barreiras ou semi-confinados. A revisão bibliográfica mostrou que, tradicionalmente, modelos empíricos e integrais são usados na análise de dispersão de substâncias tóxicas / inflamáveis, fornecendo estimativas rápidas e geralmente confiáveis ao descrever cenários simples (por exemplo, dispersão em ambientes sem obstruções sobre terreno plano). No entanto, recentemente, o uso de ferramentas de CFD para simular dispersões aumentou de forma significativa. Estas ferramentas permitem modelar cenários mais complexos, como os que ocorrem em espaços semi-confinados ou com a presença de barreiras físicas. Entre todas as ferramentas CFD disponíveis, consta na bibliografia que o software FLACS® tem bom desempenho na simulação destes cenários. Porém, como outras ferramentas similares, ainda precisa ser totalmente validado. Após a revisão bibliográfica sobre testes de campo já executados ao longo dos anos, alguns testes foram selecionados para realização de um exame preliminar de desempenho da ferramenta CFD utilizado neste estudo. Foram investigadas as possíveis fontes de incertezas em termos de capacidade de reprodutibilidade, de dependência de malha e análise de sensibilidade das variáveis de entrada e parâmetros de simulação. Os principais resultados desta fase foram moldados como princípios práticos a serem utilizados por analistas de risco ao realizar análise de dispersão com a presença de barreiras utilizando ferramentas CFD. Embora a revisão bibliográfica tenha mostrado alguns dados experimentais disponíveis na literatura, nenhuma das fontes encontradas incluem estudos detalhados sobre como realizar simulações de CFD precisas nem fornecem indicadores precisos de desempenho. Portanto, novos testes de campo foram realizados a fim de oferecer novos dados para estudos de validação mais abrangentes. Testes de campo de dispersão de nuvem de propano (com e sem a presença de barreiras obstruindo o fluxo) foram realizados no campo de treinamento da empresa Can Padró Segurança e Proteção (em Barcelona). Quatro testes foram realizados, consistindo em liberações de propano com vazões de até 0,5 kg/s, com duração de 40 segundos em uma área de descarga de 700 m2. Os testes de campo contribuíram para a reavaliação dos pontos críticos mapeados durante as primeiras fases deste estudo e forneceram dados experimentais para serem utilizados pela comunidade internacional no estudo de dispersão e validação de modelos. Simulações feitas utilizando-se a ferramenta CFD foram comparadas com os dados experimentais obtidos nos testes de campo. Em termos gerais, o simulador mostrou bom desempenho em relação às taxas de concentração da nuvem. O simulador reproduziu com sucesso a geometria complexa e seus efeitos sobre a dispersão da nuvem, mostrando claramente o efeito da barreira na distribuição das concentrações. No entanto, as simulações não foram capazes de representar toda a dinâmica da dispersão no que concerne aos efeitos da variação do vento, uma vez que as nuvens simuladas diluíram mais rapidamente do que nuvens experimentais.
Resumo:
In recent years fractionally differenced processes have received a great deal of attention due to its flexibility in financial applications with long memory. This paper considers a class of models generated by Gegenbauer polynomials, incorporating the long memory in stochastic volatility (SV) components in order to develop the General Long Memory SV (GLMSV) model. We examine the statistical properties of the new model, suggest using the spectral likelihood estimation for long memory processes, and investigate the finite sample properties via Monte Carlo experiments. We apply the model to three exchange rate return series. Overall, the results of the out-of-sample forecasts show the adequacy of the new GLMSV model.
Resumo:
Short-term load forecasting of power system has been a classic problem for a long time. Not merely it has been researched extensively and intensively, but also a variety of forecasting methods has been raised. This thesis outlines some aspects and functions of smart meter. It also presents different policies and current statuses as well as future projects and objectives of SG development in several countries. Then the thesis compares main aspects about latest products of smart meter from different companies. Lastly, three types of prediction models are established in MATLAB to emulate the functions of smart grid in the short-term load forecasting, and then their results are compared and analyzed in terms of accuracy. For this thesis, more variables such as dew point temperature are used in the Neural Network model to achieve more accuracy for better short-term load forecasting results.
Resumo:
Paper submitted to the 42nd Congress of ERSA, Dortmund, August 27th–31st 2002.
Resumo:
Paper submitted to the 51st European Congress of the Regional Science Association International, 37th Spanish Regional Science Association Conference, Barcelona, August 30-September 3, 2011.
Resumo:
This article uses data from the social survey Allbus 1998 to introduce a method of forecasting elections in a context of electoral volatility. The approach models the processes of change in electoral behaviour, exploring patterns in order to model the volatility expressed by voters. The forecast is based on the matrix of transition probabilities, following the logic of Markov chains. The power of the matrix, and the use of the mover-stayer model, is debated for alternative forecasts. As an example of high volatility, the model uses data from the German general election of 1998. The unification of two German states in 1990 caused the incorporation of around 15 million new voters from East Germany who had limited familiarity and no direct experience of the political culture in West Germany. Under these circumstances, voters were expected to show high volatility.