986 resultados para Tara Oceans Consortium
Resumo:
Within the contemporary business milieu, the discipline of selling and sales management has taken on a more prominent role in recent years. Myriad factors have contributed to the rise of interest in sales including globalization, technology, more sophisticated analytical approaches and new opportunities for co-creation of value between organizations and their customers. Over the past three decades, seven faculty consortia in sales have served as milestones to document the progress 2of the field, particularly the evolution of academic research. This article provides key takeaways from the most recent American Marketing Association (AMA) Faculty Consortium in Selling and Sales Management, which had the overarching goal of fostering new opportunities for building intercontinental research teams to effectively address the substantive issues for the future of the field. © 2014 Pi Sigma Epsilon National Educational Foundation.
Resumo:
The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidification on marine organisms and communities but few have provided details concerning full carbonate chemistry and complementary observations. Additionally, carbonate system variables are often reported in different units, calculated using different sets of dissociation constants and on different pH scales. Hence the direct comparison of experimental results has been problematic and often misleading. The need was identified to (1) gather data on carbonate chemistry, biological and biogeochemical properties, and other ancillary data from published experimental data, (2) transform the information into common framework, and (3) make data freely available. The present paper is the outcome of an effort to integrate ocean carbonate chemistry data from the literature which has been supported by the European Network of Excellence for Ocean Ecosystems Analysis (EUR-OCEANS) and the European Project on Ocean Acidification (EPOCA). A total of 185 papers were identified, 100 contained enough information to readily compute carbonate chemistry variables, and 81 data sets were archived at PANGAEA - The Publishing Network for Geoscientific & Environmental Data. This data compilation is regularly updated as an ongoing mission of EPOCA.
Resumo:
We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere Oceans (SHO) from 15°S to 64°S. The SHO database combines 3 existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/[DCO3]2- threshold of ~3800 m/[DCO3]2- = ~-10 to -5 µmol/kg for the Pacific and Indian Oceans, and ~4000 m/[DCO3]2- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core-tops beyond these thresholds from the SHO database. This database has 598 core-tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core-tops. We used this database to reconstruct Summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the 3 databases used to compile the SHO database. Thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich, database. We leave this dataset open-ended to future additions; the new core-tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.
Resumo:
Funding • The pooled data coordination team (PBoffetta, MH, YCAL) were supported by National Cancer Institute grant R03CA113157 and by National Institute of Dental and Craniofacial Research grant R03DE016611 • The Milan study (CLV) was supported by the Italian Association for Research on Cancer (Grant no. 10068). • The Aviano study (LDM) was supported by a grant from the Italian Association for Research on Cancer (AIRC), Italian League Against Cancer and Italian Ministry of Research • The Italy Multicenter study (DS) was supported by the Italian Association for Research on Cancer (AIRC), Italian League Against Cancer and Italian Ministry of Research. • The Study from Switzerland (FL) was supported by the Swiss League against Cancer and the Swiss Research against Cancer/Oncosuisse [KFS-700, OCS-1633]. • The central Europe study (PBoffetta, PBrenan, EF, JL, DM, PR, OS, NS-D) was supported by the World Cancer Research Fund and the European Commission INCOCOPERNICUS Program [Contract No. IC15- CT98-0332] • The New York multicentre study (JM) was supported by a grant from National Institute of Health [P01CA068384 K07CA104231]. • The study from the Fred Hutchison Cancer Research Center from Seattle (CC, SMS) was supported by a National Institute of Health grant [R01CA048996, R01DE012609]. • The Iowa study (ES) was supported by National Instituteof Health [NIDCR R01DE011979, NIDCR R01DE013110, FIRCA TW001500] and Veterans Affairs Merit Review Funds. • The North Carolina studies (AFO) were supported by National Institute of Health [R01CA061188], and in part by a grant from the National Institute of Environmental Health Sciences [P30ES010126]. • The Tampa study (PLazarus, JM) was supported by National Institute of Health grants [P01CA068384, K07CA104231, R01DE013158] • The Los Angeles study (Z-F Z, HM) was supported by grants from National Institute of Health [P50CA090388, R01DA011386, R03CA077954, T32CA009142, U01CA096134, R21ES011667] and the Alper Research Program for Environmental Genomics of the UCLA Jonsson Comprehensive Cancer Center. • The Houston study (EMS, GL) was supported by a grant from National Institute of Health [R01ES011740, R01CA100264]. • The Puerto Rico study (RBH, MPP) was supported by a grant from National Institutes of Health (NCI) US and NIDCR intramural programs. • The Latin America study (PBoffetta, PBrenan, MV, LF, MPC, AM, AWD, SK, VW-F) was supported by Fondo para la Investigacion Cientifica y Tecnologica (FONCYT) Argentina, IMIM (Barcelona), Fundaco de Amparo a‘ Pesquisa no Estado de Sao Paulo (FAPESP) [No 01/01768-2], and European Commission [IC18-CT97-0222] • The IARC multicentre study (SF, RH, XC) was supported by Fondo de Investigaciones Sanitarias (FIS) of the Spanish Government [FIS 97/ 0024, FIS 97/0662, BAE 01/5013], International Union Against Cancer (UICC), and Yamagiwa-Yoshida Memorial International Cancer Study Grant. • The Boston study (KKelsey, MMcC) was supported by a grant from National Institute of Health [R01CA078609, R01CA100679]. • The Rome study (SB, GC) was supported by AIRC (Italian Agency for Research on Cancer). • The US multicentre study (BW) was supported by The Intramural Program of the National Cancer Institute, National Institute of Health, United States. • The Sao Paolo study (V W-F) was supported by Fundacao de Ampara a Pesquisa no Estado de Sao Paulo (FAPESP No 10/51168-0) • The MSKCC study (SS, G-P Y) was supported by a grant from National Institute of Health [R01CA051845]. • The Seattle-Leo stud (FV) was supported by a grant from National Institute of Health [R01CA030022] • The western Europe Study (PBoffetta, IH, WA, PLagiou, DS, LS, FM, CH, KKjaerheim, DC, TMc, PT, AA, AZ) was supported by European Community (5th Frame work Programme) grant no QLK1-CT-2001- 00182. • The Germany Heidelberg study (HR) was supported by the grant No. 01GB9702/3 from the German Ministry of Education and Research.
Resumo:
Acknowledgments The authors wish to thank the crews, fishermen and scientists who conducted the various surveys from which data were obtained, and Mark Belchier and Simeon Hill for their contributions. This work was supported by the Government of South Georgia and South Sandwich Islands. Additional logistical support provided by The South Atlantic Environmental Research Institute with thanks to Paul Brickle. Thanks to Stephen Smith of Fisheries and Oceans Canada (DFO) for help in constructing bootstrap confidence limits. Paul Fernandes receives funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland), and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. We also wish to thank two anonymous referees for their helpful suggestions on earlier versions of this manuscript.
Resumo:
Peer reviewed
Resumo:
Corrigendum European Journal of Human Genetics (2016) 24, 1515; doi:10.1038/ejhg.2016.81 22 Years of predictive testing for Huntington’s disease: the experience of the UK Huntington’s Prediction Consortium Sheharyar S Baig, Mark Strong, Elisabeth Rosser, Nicola V Taverner, Ruth Glew, Zosia Miedzybrodzka, Angus Clarke, David Craufurd, UK Huntington's Disease Prediction Consortium and Oliver W Quarrell Correction to: European Journal of Human Genetics advance online publication, 11 May 2016; doi: 10.1038/ejhg.2016.36 Post online publication the authors realised that they had made an error: The sentence on page 2: 'In the first 5-year period........but this changed significantly in the last 5-year period with 51% positive and 49% negative (χ2=20.6, P<0.0001)' should read: 'In the first 5-year period........but this changed significantly in the last 5-year period with 49% positive and 51% negative (χ2=20.6, P<0.0001)'.
Resumo:
The Arctic Ocean and Western Antarctic Peninsula (WAP) are the fastest warming regions on the planet and are undergoing rapid climate and ecosystem changes. Until we can fully resolve the coupling between biological and physical processes we cannot predict how warming will influence carbon cycling and ecosystem function and structure in these sensitive and climactically important regions. My dissertation centers on the use of high-resolution measurements of surface dissolved gases, primarily O2 and Ar, as tracers or physical and biological functioning that we measure underway using an optode and Equilibrator Inlet Mass Spectrometry (EIMS). Total O2 measurements are common throughout the historical and autonomous record but are influenced by biological (net metabolic balance) and physical (temperature, salinity, pressure changes, ice melt/freeze, mixing, bubbles and diffusive gas exchange) processes. We use Ar, an inert gas with similar solubility properties to O2, to devolve distinct records of biological (O2/Ar) and physical (Ar) oxygen. These high-resolution measurements that expose intersystem coupling and submesoscale variability were central to studies in the Arctic Ocean, WAP and open Southern Ocean that make up this dissertation.
Key findings of this work include the documentation of under ice and ice-edge blooms and basin scale net sea ice freeze/melt processes in the Arctic Ocean. In the WAP O2 and pCO2 are both biologically driven and net community production (NCP) variability is controlled by Fe and light availability tied to glacial and sea ice meltwater input. Further, we present a feasibility study that shows the ability to use modeled Ar to derive NCP from total O2 records. This approach has the potential to unlock critical carbon flux estimates from historical and autonomous O2 measurements in the global oceans.
Resumo:
In an earlier paper by two of the authors the conclusion was reached that the 33 recognized species of oxides of Mn could be separated into 3 groups: 1) those which appeared to be persistently supergene in origin, 2) those which appeared to be persistently hypogene, and 3) those which were supergene in some localities and hypogene in other localities. When that paper was written, there were available about 250 X-ray diffraction analyses of mineral specimens, also 35 complete and about 150 partial chemical analyses. The conclusions of that paper were based upon the interpretation of the geologic conditions under which these specimens occurred. Late in the preparation of that paper, it seemed worthwhile to make numerous semiquantitative analyses of specimens, largely from 9 western [U.S.A] states, selected carefully from 5 groups of geologic environments, in the hope that the frequency and percentages of some elements might be distinctive of the several geologic groups. For this purpose, 95 specimens were selected from the 5 groups, as follows: 19 specimens interpreted as supergene oxides by the geologists who collected them, 35 specimens of hypogene vein oxides, 22 specimens of Mn-bearing hot spring aprons, 9 specimens of stratified oxides, and 10 specimens of deep-sea nodules. The spectrographic analyses here recorded indicate that a group of elements - W, Ba, Sr, Be, As, Sb, Tl, and Ge - are present more commonly, and largely in higher percentages, in the hypogene oxide than in the supergene oxides and thus serve to indicate different sources of the Mn. Also, the frequency and percentages of some of these elements indicate a genetic relation of the manganese oxides in hypogene veins, hot spring aprons, and stratified deposits. The analyses indicate a declining percentage of some elements from depth to the surface in these 3 related groups and increasing percentages of some other elements. It is concluded that some of the elements in deep-sea nodules indicate that sources other than rocks decomposed on the continents, probably vulcanism on the floors of the seas, have contributed to their formation.
Resumo:
Barium in marine terrigenous surface sediments of the European Nordic Seas is analysed to evaluate its potential as palaeoproductivity proxy. Biogenic Ba is calculated from Ba and Al data using a conventional approach. For the determination of appropriate detrital Ba/Al ratios a compilation of Ba and Al analyses in rocks and soils of the catchments surrounding the Nordic Seas is presented. The resulting average detrital Ba/Al ratio of 0.0070 is similar to global crustal average values. In the southern Nordic Seas the high input of basaltic material with a low Ba/Al ratio is evident from high values of magnetic susceptibility and low Al/Ti ratios. Most of the Ba in the marine surface sediments is of terrigenous and not of biogenic origin. Variability in the lithogenic composition has been considered by the application of regionally varying Ba/Al ratios. The biogenic Ba values are comparable with those observed in the central Arctic Ocean, they are lower than in other oceanic regions. Biogenic Ba values are correlated with other productivity proxies and with oceanographic data for a validation of the applicability in paleoceanography. In the Iceland Sea and partly in the marginal sea-ice zone of the Greenland Sea elevated values of biogenic Ba indicate seasonal phytoplankton blooms. In both areas paleoproductivities may be reconstructed based on Ba and Al data of sediment cores.
Resumo:
Results of experimental studies of ion exchange properties of manganese and iron minerals in micronodules from diverse bioproductive zones of the World Ocean were considered. It was found that sorption behavior of these minerals was similar to that of ore minerals from ferromanganese nodules and low-temperature hydrothermal crusts. The exchange complex of minerals in the micronodules includes the major (Na**+, K**+, Ca**2+, Mg**2+, and Mn**2+) and subordinate (Ni**2+, Cu**2+, Co**2+, Pb**2+, and others) cations. Reactivity of theses cations increases from Pb**2+ and Co**2+ to Na**+ and Ca**2+. Exchange capacity of micronodule minerals increases from alkali to heavy metal cations. Capacity of iron and manganese minerals in oceanic micronodules increases in the following series: goethite < goethite + birnessite < todorokite + asbolane-buserite + birnessite < asbolane-buserite + birnessite < birnessite + asbolane-buserite < birnessite + vernadite ~= Fe-vernadite + Mn-feroxyhyte. Obtained data supplement available information on ion exchange properties of oceanic ferromanganese sediments and refine the role of sorption processes in redistribution of metal cations at the bottom water - sediment interface during micronodule formation and growth.
Resumo:
Carbon in lipids separated from organic matter of fish and marine mammal bones from bottom of the Pacific and Atlantic oceans has d13C values ranging from -21.6 to -25.8 per mil and is isotopically lighter than that in lipids and total organic matter of host sediments. During fossilization of organic phosphate carbon isotope composition of bound lipids of fish bone becomes lighter and that of bones of mammals becomes heavier, possibly as a result of metabolisms of these organisms and composition of phospholipids in them.
Resumo:
The cores and dredges described are taken during the R/V New Horizon RISE III Expedition from April until May 1979 by the Scripps Institute of Oceanography. A total of 36 cores and dredges were recovered and are available at Scripps Institute of Oceanography for sampling and study. The goal of this expedition was to accomplish the field work of a combined field and laboratory study aimed at increasing the understanding of the origins and development of young oceanic volcanoes.