1000 resultados para T-Lymphocytes -- metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Whether iron metabolism affects metabolic syndrome (METS) is debated. We assessed the association between several markers of iron metabolism and incidence of METS. METHODS AND RESULTS: Data from 3271 participants (1870 women, 51.3 ± 10.4 years), free of METS at baseline and followed for 5.5 years. The association of serum iron, ferritin and transferrin with incident METS was assessed separately by gender. Incidence of METS was 22.6% in men and 16.5% in women (p < 0.001). After multivariate adjustment, a positive association was found between transferrin and incident METS in men: odds ratio (OR) and 95% confidence interval for the fourth relative to the first quartile 1.55 (1.04-2.31), p for trend = 0.03, while no association was found for iron OR = 0.81 (0.53-1.24), p for trend = 0.33 and ferritin OR = 1.30 (0.88-1.92), p for trend = 0.018. In women, a negative association was found between iron and incident METS: OR for the fourth relative to the first quartile 0.51 (0.33-0.80), p for trend<0.03; the association between transferrin and incident METS was borderline significant: OR = 1.45 (0.97-2.17), p for trend = 0.07 and no association was found for ferritin: OR = 1.11 (0.76-1.63), p for trend = 0.58. CONCLUSION: Transferrin, not ferritin, is independently associated with an increased risk of incident METS; the protective effect of iron in women should be further explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plusieurs études populationnelles ont montré l'existence d'une association entre des taux sanguins élevés de transferrine et le syndrome métabolique (SM). Bien que cette association soit bien établie, restent encore à être décrites les associations entre le SM et les autres marqueurs sanguins du métabolisme du fer, tels que le fer, la transferrine (Tsf), la capacité totale de fixation de la transferrine (CTF) ou la saturation de la transferrine (SaTsf) sanguins. Le but de notre étude a été d'identifier les associations entre les différents marqueurs du métabolisme du fer (fer, ferritine, Tsf, CTF et SaTsf) et le SM. Les données de l'étude CoLaus, récoltées entre 2003 et 2006, ont été utilisées. Le SM était défini selon les critères du National Cholesterol Education Program Adult Panel III. L'analyse statistique a été faite en stratifiant selon le genre ainsi que le status ménopausal chez les femmes. Des 6733 participants, 1235 (18%) ont été exclus de fait d'absence de données concernant les variables qui nous intéressaient, ou chez qui nous avons soupçonné une possible hémochromatose non diagnostiquée (SaTsf> 50%). Des 5498 participants restant (âge moyen ± écart-type: 53 ± 11 ans), 2596 étaient des hommes, 1285 des femmes pré- et 1617 des femmes postménopausées. La prévalence du SM était de 29,4% chez les hommes, 8,3% et 25,5% chez les femmes pré- et postménopausées, respectivement. Dans les trois groupes, la prévalence du SM était la plus haute dans les quartiles les plus élevés de ferritine, Tsf et CTF, ainsi que dans le quartile le plus bas de SaTsf. Après ajustement sur l'âge, l'indice de masse corporelle, la protéine C réactive, la consommation de tabac et/ou d'alcool, la prise de suppléments en fer et les marqueurs hépatiques, l'appartenance au quartile le plus élevé de ferritine, Tsf ou CTF était associée à un risque plus important de SM chez les hommes et les femmes postménopausées : Odds ratio (OR) et [intervalle de confiance à 95%] pour la ferritine 1.44 [1.07-1.94] et 1.47 [0.99-2.17]; pour la Tsf et la CTF, OR=1.43 [1.06-1.91] et 2.13 [1.44-3.15] pour les hommes et les femmes postménopausées, respectivement. Au contraire, l'appartenance au quartile le plus élevé de la SaTsf était associé à un risque moins important de SM: OR=0.77 [0.57-1.05] et 0.59 [0.39-0.90] pour les hommes et les femmes postménopausées, respectivement. Il n'y avait aucune association entre les marqueurs sanguins du métabolisme du fer et le SM chez les femmes préménopausées, ni entre le fer sanguin et le SM chez les trois groupes. En conclusion, la majorité des marqueurs sanguins du métabolisme du fer, mais pas le fer lui-même, sont associés de manière indépendante au SM chez les hommes et les femmes postménopausées. -- Context: Excessive iron storage has been associated with metabolic syndrome (MS). Objective: To assess the association between markers of iron metabolism and MS in a healthy population. Design: Cross-sectional study conducted between 2003 and 2006. Setting: Population-based study in Lausanne, Switzerland. Patients: 5,498 participants aged 35-75 years, stratified by sex and menopausal status. Participants with transferrin saturation (TSAT) >50% were excluded. Intervention: None. Main Outcome Measures: serum iron, ferritin, transferrin, total iron binding capacity (TIBC) and TSAT. MS was defined according to ATP-III criteria. Results: Prevalence of MS was 29.4% in men, 8.3% in premenopausal and 25.5% in postmenopausal women. On bivariate analysis, the highest prevalence of MS occurred in the highest quartiles of serum ferritin, transferrin and TIBC, and in the lowest quartile of TSAT. After multivariate adjustment for age, body mass index, C-reactive protein, smoking, alcohol, liver markers and iron supplementation, men and postmenopausal women in the highest quartile of serum ferritin, transferrin and TIBC had a higher risk of presenting with MS: for ferritin, Odds ratio and [95% CI]=1.44 [1.07-1.94] for men and 1.47 [0.99-2.17] for postmenopausal women; for transferrin and TIBC, OR=1.43 [1.06-1.91] and 2.13 [1.44-3.15], Participants in the highest quartile of TSAT had a lower risk of MS: OR=0.77 [0.57-1.05] for men and 0.59 [0.39-0.90] for postmenopausal women. No association was found between iron and MS and between markers of iron metabolism and MS in premenopausal women. Conclusion: Ferritin, transferrin, TIBC are positively and TSAT is negatively associated with MS in men and postmenopausal women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NLRC5 is a transcriptional regulator of MHC class I (MHCI), which maintains high MHCI expression particularly in T cells. Recent evidence highlights an important NK-T-cell crosstalk, raising the question on whether NLRC5 specifically modulates this interaction. Here we show that NK cells from Nlrc5-deficient mice exhibit moderate alterations in inhibitory receptor expression and responsiveness. Interestingly, NLRC5 expression in T cells is required to protect them from NK-cell-mediated elimination upon inflammation. Using T-cell-specific Nlrc5-deficient mice, we show that NK cells surprisingly break tolerance even towards 'self' Nlrc5-deficient T cells under inflammatory conditions. Furthermore, during chronic LCMV infection, the total CD8(+) T-cell population is severely decreased in these mice, a phenotype reverted by NK-cell depletion. These findings strongly suggest that endogenous T cells with low MHCI expression become NK-cell targets, having thus important implications for T-cell responses in naturally or therapeutically induced inflammatory conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upon infection, antigen-specific naive CD8 T cells are activated and differentiate into short-lived effector cells (SLECs) and memory precursor cells (MPECs). The underlying signaling pathways remain largely unresolved. We show that Rictor, the core component of mammalian target of rapamycin complex 2 (mTORC2), regulates SLEC and MPEC commitment. Rictor deficiency favors memory formation and increases IL-2 secretion capacity without dampening effector functions. Moreover, mTORC2-deficient memory T cells mount more potent recall responses. Enhanced memory formation in the absence of mTORC2 was associated with Eomes and Tcf-1 upregulation, repression of T-bet, enhanced mitochondrial spare respiratory capacity, and fatty acid oxidation. This transcriptional and metabolic reprogramming is mainly driven by nuclear stabilization of Foxo1. Silencing of Foxo1 reversed the increased MPEC differentiation and IL-2 production and led to an impaired recall response of Rictor KO memory T cells. Therefore, mTORC2 is a critical regulator of CD8 T cell differentiation and may be an important target for immunotherapy interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-glycoprotein (Pgp), a protein codified by Multi Drug Resistance (MDR1) gene, has a detoxifying function and might influence the toxicity and pharmacokinetics and pharmacodynamics of drugs. Sampling strategies to improve Pgp studies could be useful to optimize the sensitivity and the reproducibility of efflux assays. This study aimed to compare Pgp expression and efflux activity by measuring Rhodamine123 (Rh123) retention in lymphocytes stored under different conditions, in order to evaluate the potential utility of any of the storing conditions in Pgp functionality. Our results show no change in protein expression of Pgp by confocal studies and Western blotting, nor changes at the mRNA level (qRT-PCR). No differences in Rh123 efflux by Pgp activity assays were found between fresh and frozen lymphocytes after 24 hours of blood extraction, using either of the two Pgp specific inhibitors (VP and PSC833). Different working conditions in the 24 hours post blood extraction do not affect Rh123 efflux. These results allow standardization of Pgp activity measurement in different individuals with different timing of blood sampling and in different geographic areas. _______________

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chez les patients cancéreux, les cellules malignes sont souvent reconnues et détruites par les cellules T cytotoxiques du patient. C'est pourquoi, depuis plusieurs années, des recherches visent à produire des vaccins sensibilisant les cellules de l'immunité adaptative, afin de prévenir certains cancers. Bien que les vaccins ciblant les cellules T CD8+ (cytotoxiques) ont une efficacité in-vitro élevée, un vaccin pouvant cibler les cellules T CD8+ et CD4+ aurait une plus grande efficacité (1-3). En effet, les cellules T helper (CD4+) favorisent la production et la maintenance des cellules T CD8+ mémoires à longue durée de vie. Il existe un grand nombre de sous-types de cellules T CD4+ et leur action envers les cellules cancéreuses est différente. Par exemple, les lymphocytes Treg ont une activité pro-tumorale importante (4) et les lymphocytes Th1 ont une activité anti-tumorale (5). Cependant, le taux naturel des différents sous-types de cellules T CD4+ spécifiques aux antigènes tumoraux est variable. De plus, une certaine flexibilité des différents sous-types de cellules T CD4+ a été récemment démontrée (6). Celle-ci pourrait être ciblée par des protocoles de vaccination avec des antigènes tumoraux administrés conjointement à des adjuvants définis. Pour cela, il faut approfondir les connaissances sur le rôle des cellules T CD4+ spécifiques aux antigènes dans l'immunité anti-tumorale et connaître précisément la proportion des sous-types de cellules T CD4+ activées avant et après la vaccination. L'analyse des cellules T, par la cytométrie de flux, est très souvent limité par le besoin d'un nombre très élevé de cellules pour l'analyse de l'expression protéique. Or dans l'analyse des cellules T CD4+ spécifiques aux antigènes tumoraux cette technique n'est souvent pas applicable, car ces cellules sont présentes en très faible quantité dans le sang et dans les tissus tumoraux. C'est pourquoi, une approche basée sur l'analyse de la cellule T individuelle a été mise en place afin d'étudier l'expression du profil génétique des cellules T CD8+ et CD4+. (7,8) Méthode : Ce nouveau protocole (« single cell ») a été élaboré à partir d'une modification du protocole PCR-RT, qui permet la détection spécifique de l'ADN complémentaire (ADNc) après la transcription globale de l'ARN messager (ARNm) exprimé par une cellule T individuelle. Dans ce travail, nous optimisons cette nouvelle technique d'analyse pour les cellules T CD4+, en sélectionnant les meilleures amorces. Tout d'abord, des clones à profils fonctionnels connus sont générés par cytométrie de flux à partir de cellules T CD4+ d'un donneur sain. Pour cette étape d'optimisation des amorces, la spécificité des cellules T CD4+ n'est pas prise en considération. Il est, donc, possible d'étudier et de trier ces clones par cytométrie de flux. Ensuite, grâce au protocole « single cell », nous testons par PCR les amorces des différents facteurs spécifiques de chaque sous-type des T CD4+ sur des aliquotes issus d'une cellule provenant des clones générés. Nous sélectionnons les amorces dont la sensibilité, la spécificité ainsi que les valeurs prédictives positives et négatives des tests sont les meilleures. (9) Conclusion : Durant ce travail nous avons généré de l'ADNc de cellules T individuelles et sélectionné douze paires d'amorces pour l'identification des sous-types de cellules T CD4+ par la technique d'analyse PCR « single cell ». Les facteurs spécifiques aux cellules Th2 : IL-4, IL-5, IL-13, CRTh2, GATA3 ; les facteurs spécifiques aux cellules Th1 : TNFα, IL-2 ; les facteurs spécifiques aux cellules Treg : FOXP3, IL-2RA ; les facteurs spécifiques aux cellules Th17 : RORC, CCR6 et un facteur spécifique aux cellules naïves : CCR7. Ces amorces peuvent être utilisées dans le futur en combinaison avec des cellules antigènes-spécifiques triées par marquage des multimères pMHCII. Cette méthode permettra de comprendre le rôle ainsi que l'amplitude et la diversité fonctionnelle de la réponse de la cellule T CD4+ antigène-spécifique dans les cancers et dans d'autres maladies. Cela afin d'affiner les recherches en immunothérapie oncologique. (8)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the mechanisms of nodule N2 fixation in legumes are now well documented, some uncertainty remains on the metabolic consequences of water deficit. In most cases, little consideration is given to other organs and, therefore, the coordinated changes in metabolism in leaves, roots, and nodules are not well known. Here, the effect of water restriction on exclusively N2-fixing alfalfa (Medicago sativa L.) plants was investigated, and proteomic, metabolomic, and physiological analyses were carried out. It is shown that the inhibition of nitrogenase activity caused by water restriction was accompanied by concerted alterations in metabolic pathways in nodules, leaves, and roots. The data suggest that nodule metabolism and metabolic exchange between plant organs nearly reached homeostasis in asparagine synthesis and partitioning, as well as the N demand from leaves. Typically, there was (i) a stimulation of the anaplerotic pathway to sustain the provision of C skeletons for amino acid (e.g. glutamate and proline) synthesis; (ii) re-allocation of glycolytic products to alanine and serine/glycine; and (iii) subtle changes in redox metabolites suggesting the implication of a slight oxidative stress. Furthermore, water restriction caused little change in both photosynthetic efficiency and respiratory cost of N2 fixation by nodules. In other words, the results suggest that under water stress, nodule metabolism follows a compromise between physiological imperatives (N demand, oxidative stress) and the lower input to sustain catabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the bacterial genus Streptomyces are well known for their ability to produce an exceptionally wide selection of diverse secondary metabolites. These include natural bioactive chemical compounds which have potential applications in medicine, agriculture and other fields of commerce. The outstanding biosynthetic capacity derives from the characteristic genetic flexibility of Streptomyces secondary metabolism pathways: i) Clustering of the biosynthetic genes in chromosome regions redundant for vital primary functions, and ii) the presence of numerous genetic elements within these regions which facilitate DNA rearrangement and transfer between non-progeny species. Decades of intensive genetic research on the organization and function of the biosynthetic routes has led to a variety of molecular biology applications, which can be used to expand the diversity of compounds synthesized. These include techniques which, for example, allow modification and artificial construction of novel pathways, and enable gene-level detection of silent secondary metabolite clusters. Over the years the research has expanded to cover molecular-level analysis of the enzymes responsible for the individual catalytic reactions. In vitro studies of the enzymes provide a detailed insight into their catalytic functions, mechanisms, substrate specificities, interactions and stereochemical determinants. These are factors that are essential for the thorough understanding and rational design of novel biosynthetic routes. The current study is a part of a more extensive research project (Antibiotic Biosynthetic Enzymes; www.sci.utu.fi/projects/biokemia/abe), which focuses on the post-PKS tailoring enzymes involved in various type II aromatic polyketide biosynthetic pathways in Streptomyces bacteria. The initiative here was to investigate specific catalytic steps in anthracycline and angucycline biosynthesis through in vitro biochemical enzyme characterization and structural enzymology. The objectives were to elucidate detailed mechanisms and enzyme-level interactions which cannot be resolved by in vivo genetic studies alone. The first part of the experimental work concerns the homologous polyketide cyclases SnoaL and AknH. These catalyze the closure of the last carbon ring of the tetracyclic carbon frame common to all anthracycline-type compounds. The second part of the study primarily deals with tailoring enzymes PgaE (and its homolog CabE) and PgaM, which are responsible for a cascade of sequential modification reactions in angucycline biosynthesis. The results complemented earlier in vivo findings and confirmed the enzyme functions in vitro. Importantly, we were able to identify the amino acid -level determinants that influence AknH and SnoaL stereoselectivity and to determine the complex biosynthetic steps of the angucycline oxygenation cascade of PgaE and PgaM. In addition, the findings revealed interesting cases of enzyme-level adaptation, as some of the catalytic mechanisms did not coincide with those described for characterised homologs or enzymes of known function. Specifically, SnoaL and AknH were shown to employ a novel acid-base mechanism for aldol condenzation, whereas the hydroxylation reaction catalysed by PgaM involved unexpected oxygen chemistry. Owing to a gene-level fusion of two ancestral reading frames, PgaM was also shown to adopt an unusual quaternary sturucture, a non-covalent fusion complex of two alternative forms of the protein. Furthermore, the work highlighted some common themes encountered in polyketide biosynthetic pathways such as enzyme substrate specificity and intermediate reactivity. These are discussed in the final chapters of the work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity has become the leading cause of many chronic diseases, such as type 2 diabetes and cardiovascular diseases. The prevalence of obesity is high in developed countries and it is also a major cause of the use of health services. Ectopic fat accumulation in organs may lead to metabolic disturbances, such as insulin resistance.Weight loss with very-low-energy diet is known to be safe and efficient. Weight loss improves whole body insulin sensitivity, but its effects on tissue and organ level in vivo are not well known. The aims of the studies were to investigate possible changes of weight loss in glucose and fatty acid uptake and perfusion and fat distribution at tissue and organ level using positron emission tomography and magnetic resonance imaging and spectroscopy in 34 healthy obese subjects. The results showed that whole-body insulin sensitivity increased after weight loss with very-low-energy diet and this is associated with improved skeletal muscle insulin-stimulated glucose uptake, but not with adipose tissue, liver or heart glucose uptake. Liver insulin resistance decreased after weight loss. Liver and heart free fatty acid uptakes decreased concomitantly with liver and heart triglyceride content. Adipose tissue and myocardial perfusion decreased. In conclusion, enhanced skeletal muscle glucose uptake leads to increase in whole-body insulin sensitivity when glucose uptake is preserved in other organs studied. These findings suggest that lipid accumulation found in the liver and the heart in obese subjects without co-morbidies is in part reversible by reduced free fatty acid uptake after weight loss. Reduced lipid accumulation in organs may improve metabolic disturbances, e.g. decrease liver insulin resistance. Keywords: Obesity, weight loss, very-low-energy diet, adipose tissue metabolism, liver metabolism, heart metabolism, positron emission tomography