928 resultados para Substrate-reduction activity
Resumo:
A total of 160 samples of 20 Australian-sourced feed ingredients of plant origin for pigs and poultry was analysed for total phosphorus and phytate-phosphorus contents and endogenous phytase activity. The majority of total P was present as phytate-phosphorus, and these concentrations were significantly correlated in 9 feed ingredients. The endogenous phytase activity in tested feed ingredients was negligible other than for wheat, its by-products and barley. Phytate-phosphorus was determined by a standard 'ferric chloride precipitation' method, which was satisfactory for individual feed ingredients, with the exception of lupins and faba beans. It appears that phytate is more difficult to extract from these two feedstuffs, possibly because of the affinity of phytate for protein. Ferric chloride precipitation methods are not suitable for phytate-phosphorus determinations of complete feed samples containing other sources of phosphorus, which is a distinct limitation. A lesser limitation is that these methods cannot distinguish between the various esters of myo-inositol phosphate present. Given the variation of phytate contents within ingredients, particularly wheat, the desirability of determining dietary substrate levels is emphasised to take full advantage of including exogenous phytases in pig and poultry diets to reduce phosphorus excretion and abate phosphorus pollution.
Resumo:
Background and aim: Obesity is a risk factor for progression of fibrosis in chronic liver diseases such as non-alcoholic fatty liver disease and hepatitis C. The aim of this study was to investigate the longer term effect of weight loss on liver biochemistry, serum insulin levels, and quality of life in overweight patients with liver disease and the effect of subsequent weight maintenance or regain. Patients: Thirty one patients completed a 15 month diet and exercise intervention. Results: On completion of the intervention, 21 patients (68%) had achieved and maintained weight loss with a mean reduction of 9.4 (4.0)% body weight. Improvements in serum alanine aminotransferase (ALT) levels were correlated with the amount of weight loss (r=0.35, p=0.04). In patients who maintained weight loss, mean ALT levels at 15 months remained significantly lower than values at enrolment (p=0.004), while in regainers (n=10), mean ALT levels at 15 months were no different to values at enrolment (p=0.79). Improvements in fasting serum insulin levels were also correlated with weight loss (r=0.46, p=0.04), and subsequent weight maintenance sustained this improvement. Quality of life was significantly improved after weight loss. Weight maintainers sustained recommended levels of physical activity and had higher fasting insulin levels (p=0.03) at enrolment than weight regainers. Conclusion: In summary, these findings demonstrate that maintenance of weight loss and exercise in overweight patients with liver disease results in a sustained improvement in liver enzymes, serum insulin levels, and quality of life. Treatment of overweight patients should form an important component of the management of those with chronic liver disease.
Resumo:
Research techniques and a methodology have been developed that enable the reduction kinetics of molten lead smelting slags with solid carbon to be studied. The rates of reduction of PbO-FeO-Fe2O3-CaO-SiO2 slags with carbon have been measured for a range of slag compositions for PbO concentrations between 3 and 100 weight percent, and temperatures between 1423 and 1573 K. The reduction rates were determined for both graphite and coke. Within the range of process conditions examined, it has been shown that the reaction rates are almost independent of carbon reactivity, SiO2/CaO and SiO2/Fe ratio in the range of compositions investigated and are not influenced by the presence of sulphur in the slag.The apparent first order rate constants for oxygen removal increase with increasing PbO concentration and oxygen activity in the slag. The data indicate that the rate limiting reaction step for the reduction of lead slags with solid carbon is the chemical reaction at the gas/slag interface.
Resumo:
Lines of transgenic tobacco have been generated that are transformed with either the wild-type peanut peroxidase prxPNC2 cDNA, driven by the CaMV3 5S promoter (designated 35S::prxPNC2-WT) or a mutated PNC2 cDNA in which the asparagine residue (Asn(189)) associated with the point of glycan attachment (Asn(189)) has been replaced with alanine (designated 35S::prxPNC2-M). PCR, using genomic DNA as template, has confirmed the integration of the 35S::prxPNC2-WT and 35::prxPNC2-M constructs into the tobacco genome, and western analysis using anti-PNC2 antibodies has revealed that the prxPNC2-WT protein product (PNC2-WT) accumulates with a molecular mass of 34,670 Da, while the prxPNC2-M protein product (PNC2-M) accumulates with a molecular mass of 32,600 Da. Activity assays have shown that both PNC2-WT and PNC2-M proteins accumulate preferentially in the ionically-bound cell wall fraction, with a significantly higher relative accumulation of the PNC2-WT isoenzyme in the ionically-bound fraction when compared with the PNC2-M isoform. Kinetic analysis of the partially purified PNC2-WT isozyme revealed an affinity constant (apparent K-m) of 11.2 mM for the reductor substrate guaiacol and 1.29 mM for H2O2, while values of 11.9 mM and 1.12 mM were determined for the PNC2-M isozyme. A higher Arrenhius activation energy (E,,) was determined for the PNC2-M isozyme (22.9 kJ mol(-1)), when compared with the PNC2-WT isozyme (17.6 kJ mol(-1)), and enzyme assays have determined that the absence of the glycan influences the thermostability of the PNC2-M isozyme. These results are discussed with respect to the proposed roles of N-linked glycans attached to plant peroxidases. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.
Resumo:
Studies have demonstrated that polymeric biomaterials have the potential to support osteoblast growth and development for bone tissue repair. Poly( beta- hydroxybutyrate- co- beta- hydroxyvalerate) ( PHBV), a bioabsorbable, biocompatible polyhydroxy acid polymer, is an excellent candidate that, as yet, has not been extensively investigated for this purpose. As such, we examined the attachment characteristics, self- renewal capacity, and osteogenic potential of osteoblast- like cells ( MC3T3- E1 S14) when cultured on PHBV films compared with tissue culture polystyrene ( TCP). Cells were assayed over 2 weeks and examined for changes in morphology, attachment, number and proliferation status, alkaline phosphatase ( ALP) activity, calcium accumulation, nodule formation, and the expression of osteogenic genes. We found that these spindle- shaped MC3T3- E1 S14 cells made cell - cell and cell - substrate contact. Time- dependent cell attachment was shown to be accelerated on PHBV compared with collagen and laminin, but delayed compared with TCP and fibronectin. Cell number and the expression of ALP, osteopontin, and pro- collagen alpha 1( I) mRNA were comparable for cells grown on PHBV and TCP, with all these markers increasing over time. This demonstrates the ability of PHBV to support osteoblast cell function. However, a lag was observed for cells on PHBV in comparison with those on TCP for proliferation, ALP activity, and cbfa- 1 mRNA expression. In addition, we observed a reduction in total calcium accumulation, nodule formation, and osteocalcin mRNA expression. It is possible that this cellular response is a consequence of the contrasting surface properties of PHBV and TCP. The PHBV substrate used was rougher and more hydrophobic than TCP. Although further substrate analysis is required, we conclude that this polymer is a suitable candidate for the continued development as a biomaterial for bone tissue engineering.
Resumo:
The aim was to investigate the roles of transmembrane domain 2 and the adjacent region of the first intracellular loop in determining human noradrenaline transporter (hNET) function by pharmacological and substituted-cysteine accessibility method (SCAM) analyses. It was first necessary to establish a suitable background NET for SCAM. Alanine mutants of endogenous hNET cysteines, hC86A, hC131A and hC339A, were examined and showed no marked effects on expression or function. hNET and the mutants were also resistant to methanethiosulfonate (MTS), ethylammonium (MTSEA) and MTStrimethylammonium (MTSET). Hence, wild-type hNET is an appropriate background for production of cysteine mutants for SCAM. Pharmacological investigation showed that all mutants except hT99C and hL109C showed reduced cell-surface expression, while all except hM107C showed a reduction in functional activity. The mutations did not markedly affect the apparent affinities of substrates, but apparent affinities of cocaine were decreased 7-fold for hP97C and 10-fold for hF101C and increased 12-fold for hY98C. [H-3]Nisoxetine binding affinities were decreased 13-fold for hP97C and 5-fold for hF101C. SCAM analysis revealed that only hL102C was sensitive to 1.25 mM MTSEA, and this sensitivity was protected by noradrenaline, nisoxetine and cocaine. The results suggest that this region of hNET is important for interactions with antidepressants and cocaine, but it is probably not involved in substrate translocation mechanisms.
Resumo:
Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) is the target for the sulfonylurea herbicides, which act as potent inhibitors of the enzyme. Chlorsulfuron (marketed as Glean) and sulforneturon methyl (marketed as Oust) are two commercially important members of this family of herbicides. Here we report crystal structures of yeast AHAS in complex with chlorsulfuron (at a resolution of 2.19 Angstrom), sulforneturon methyl (2.34 Angstrom), and two other sulfonylureas, metsulfuron methyl (2.29 Angstrom) and tribenuron methyl (2.58 Angstrom). The structures observed suggest why these inhibitors have different potencies and provide clues about the differential effects of mutations in the active site tunnel on various inhibitors. In all of the structures, the thiamin diphosphate cofactor is fragmented, possibly as the result of inhibitor binding. In addition to thiamin diphosphate, AHAS requires FAD for activity. Recently, it has been reported that reduction of FAD can occur as a minor side reaction due to reaction with the carbanion/enamine of the hydroxyethyl-ThDP intermediate that is formed midway through the catalytic cycle. Here we report that the isoalloxazine ring has a bent conformation that would account for its ability to accept electrons from the hydroxyethyl intermediate. Most sequence and mutation data suggest that yeast AHAS is a high-quality model for the plant enzyme.
Resumo:
To ensure signalling fidelity, kinases must act only on a defined subset of cellular targets. Appreciating the basis for this substrate specificity is essential for understanding the role of an individual protein kinase in a particular cellular process. The specificity in the cell is determined by a combination of peptide specificity of the kinase (the molecular recognition of the sequence surrounding the phosphorylation site), substrate recruitment and phosphatase activity. Peptide specificity plays a crucial role and depends on the complementarity between the kinase and the substrate and therefore on their three-dimensional structures. Methods for experimental identification of kinase substrates and characterization of specificity are expensive and laborious, therefore, computational approaches are being developed to reduce the amount of experimental work required in substrate identification. We discuss the structural basis of substrate specificity of protein kinases and review the experimental and computational methods used to obtain specificity information. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The three human SULT1A sulfotransferase enzymes are closely related in amino acid sequence (>90%), yet differ in their substrate preference and tissue distribution. SULT1A1 has a broad tissue distribution and metabolizes a range of xenobiotics as well as endogenous substrates such as estrogens and iodothyronines. While the localization of SULT1A2 is poorly understood, it has been shown to metabolize a number of aromatic amines. SULT1A3 is the major catecholamine sulfonating form, which is consistent with it being expressed principally in the gastrointestinal tract. SULT1A proteins are encoded by three separate genes, located in close proximity to each other on chromosome 16. The presence of differential 5′-untranslated regions identified upon cloning of the SULT1A cDNAs suggested the utilization of differential transcriptional start sites and/or differential splicing. This chapter describes the methods utilized by our laboratory to clone and assay the activity of the promoters flanking these different untranslated regions found on SULT1A genes. These techniques will assist investigators in further elucidating the differential mechanisms that control regulation of the human SULT1A genes. They will also help reveal how different cellular environments and polymorphisms affect the activity of SULT1A gene promoters.
Resumo:
The sulfite dehydrogenase from Starkeya novella is the only known sulfite-oxidizing enzyme that forms a permanent heterodimeric complex between a molybdenum and a heme c-containing subunit and can be crystallized in an electron transfer competent conformation. Tyr236 is a highly conserved active site residue in sulfite oxidoreductases and has been shown to interact with a nearby arginine and a molybdenum-oxo ligand that is involved in catalysis. We have created a Tyr236 to Phe substitution in the SorAB sulfite dehydrogenase. The purified SDHY236F protein has been characterized in terms of activity, structure, intramolecular electron transfer, and EPR properties. The substituted protein exhibited reduced turnover rates and substrate affinity as well as an altered reactivity toward molecular oxygen as an electron acceptor. Following reduction by sulfite and unlike SDHWT, the substituted enzyme was reoxidized quickly in the presence of molecular oxygen, a process reminiscent of the reactions of the sulfite oxidases. SDHY236F also exhibited the pH-dependent CW-EPR signals that are typically observed in vertebrate sulfite oxidases, allowing a direct link of CW-EPR properties to changes caused by a single-amino acid substitution. No quantifiable electron transfer was seen in laser flash photolysis experiments with SDHY236F. The crystal structure of SDHY236F clearly shows that as a result of the substitution the hydrogen bonding network surrounding the active site is disturbed, resulting in an increased mobility of the nearby arginine. These disruptions underline the importance of Tyr236 for the integrity of the substrate binding site and the optimal alignment of Arg55, which appears to be necessary for efficient electron transfer.
Resumo:
This study evaluates the pro-inflammatory response to the thermoplastic biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) through the analysis of cellular responses in vitro. The murine macrophage RAW264.7 cell line was cultured on solvent cast PHBV films, which was found to induce pro-inflammatory activity that required direct contact between the material and the macrophages. The identity of the pro-inflammatory stimulus was determined by culturing bone marrow-derived macrophages from bacterial lipopolysaccharide (LPS) hyporesponsive C3H/HeJ mice and CpG non-responsive TLR9-/- mice on PHBV. The lack of a pro-inflammatory response by the C3H/HeJ cells indicates that the pro-inflammatory agent present within PHBV is predominately LPS while the TLR9-/- macrophages confirmed that CpG-containing bacterial DNA is unlikely to contribute to the activity. A series of purification procedures was evaluated and one procedure was developed that utilized hydrogen peroxide treatment in solution. The optimized purification was found to substantially reduce the pro-inflammatory response to PHBV without adversely affecting either the molecular structure or molecular weight of the material thereby rendering it more amenable for use as a biomaterial in vivo. Crown Copyright (c) 2006 Published by Elsevier Ltd. All rights reserved.
Resumo:
While there is sufficient evidence to suggest that physical activity is inversely related to lifestyle diseases, researchers are far from being certain that this evidence extends to children. Nevertheless, the school physical education curriculum has been targeted as an institutional agency that could have a significant impact on health during childhood and later during adulthood if individuals could be habituated to assume a physically active lifestyle. The purpose of this article is to examine the recontextualization of biomedical knowledge into an ideology of healthism in which health is conceived as a controllable certainty and used as a pedagogical construction to transform school physical education. Using a Foucauldian perspective, we explore how the atomized biomedical model of chemical and physical relationships is constructed, reproduced, and perpetuated to service and empower the discourse and the practices of researchers and scholars. In this process the sociological or cultural aspects of public health are marginalized or ignored. As a result of this examination, alternative approaches are proposed that engage the limitations of the biomedical model and openly consider the insights that are available from the social sciences regarding what participation in physical activity means to individuals.
Resumo:
Muscle glycogen inharmoniously regulates glycogen synthase activity, glucose uptake, and proximal insulin signaling. Am J Physiol Endocrinol Metab 290: E154-E162, 2006. First published August 23, 2005; doi:10.1152/ajpendo. 00330.2005.-Insulin-stimulated glucose uptake and incorporation of glucose into skeletal muscle glycogen contribute to physiological regulation of blood glucose concentration. In the present study, glucose handling and insulin signaling in isolated rat muscles with low glycogen (LG, 24-h fasting) and high glycogen (HG, refed for 24 h) content were compared with muscles with normal glycogen (NG, rats kept on their normal diet). In LG, basal and insulin-stimulated glycogen synthesis and glycogen synthase activation were higher and glycogen synthase phosphorylation (Ser645, Ser649, Ser653, Ser657) lower than in NG. GLUT4 expression, insulin-stimulated glucose uptake, and PKB phosphorylation were higher in LG than in NG, whereas insulin receptor tyrosyl phosphorylation, insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, and GSK-3 phosphorylation were unchanged. Muscles with HG showed lower insulin-stimulated glycogen synthesis and glycogen synthase activation than NG despite similar dephosphorylation. Insulin signaling, glucose uptake, and GLUT4 expression were similar in HG and NG. This discordant regulation of glucose uptake and glycogen synthesis in HG resulted in higher insulin-stimulated glucose 6-phosphate concentration, higher glycolytic flux, and intracellular accumulation of nonphosphorylated 2-deoxyglucose. In conclusion, elevated glycogen synthase activation, glucose uptake, and GLUT4 expression enhance glycogen resynthesis in muscles with low glycogen. High glycogen concentration per se does not impair proximal insulin signaling or glucose uptake. Insulin resistance is observed at the level of glycogen synthase, and the reduced glycogen synthesis leads to increased levels of glucose 6-phosphate, glycolytic flux, and accumulation of nonphosphorylated 2-deoxyglucose.
Resumo:
Despite wide application of cellulose-azure as a substrate for measuring cellulase activity, there is no quantification of hydrolysis rate or enzymatic activities using this substrate. The aim of this study was to quantify the hydrolysis rate in terms of product formation and dye released using cellulose-azure. The amount of dye released was correlated with the production of glucose and the enzyme concentrations. It is shown that the lack of correlation can be due to (1) repression of the release of the azure-dye when azure-dye accumulates, (2) presence of degradable substrates in the cellulase powder which inflate the glucose measurements and (3) the degradation of cellulose which is not linked to the dye in the cellulose-azure. Based on the lack of correlation, it is recommended that cellulose-azure should only be applied in assays when the aim is to compare relative activities of different enzymatic systems. (c) 2005 Elsevier B.V. All rights reserved.