944 resultados para Stationary wavelet packet transform (SWPT)
Resumo:
We analyse the intensity oscillations observed in the gradual phase of a white-light flare on the RS CV n binary II Peg. Fast Fourier Transform power spectra and Wavelet analysis reveal a period of 220 s. The reliability of the oscillation is tested using several criteria. Oscillating coronal loop models are used to derive physical parameters such as temperature, electron density and magnetic field strength associated with the coronal loop. The derived parameters are consistent with the near-simultaneous X-ray observations of the flare. There is no evidence for oscillations in the quiescent state of the binary.
Resumo:
Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their non-deterministic performance. Although CAMs are favoured by technology vendors due to their deterministic high lookup rates, they suffer from the problems of high power dissipation and high silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multi-level cutting the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.
Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization
Resumo:
Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.
Resumo:
An area-efficient high-throughput architecture based on distributed arithmetic is proposed for 3D discrete wavelet transform (DWT). The 3D DWT processor was designed in VHDL and mapped to a Xilinx Virtex-E FPGA. The processor runs up to 85 MHz, which can process the five-level DWT analysis of a 128 x 128 x 128 fMRI volume image in 20 ms.
Resumo:
The future convergence of voice, video and data applications on the Internet requires that next generation technology provides bandwidth and delay guarantees. Current technology trends are moving towards scalable aggregate-based systems where applications are grouped together and guarantees are provided at the aggregate level only. This solution alone is not enough for interactive video applications with sub-second delay bounds. This paper introduces a novel packet marking scheme that controls the end-to-end delay of an individual flow as it traverses a network enabled to supply aggregate- granularity Quality of Service (QoS). IPv6 Hop-by-Hop extension header fields are used to track the packet delay encountered at each network node and autonomous decisions are made on the best queuing strategy to employ. The results of network simulations are presented and it is shown that when the proposed mechanism is employed the requested delay bound is met with a 20% reduction in resource reservation and no packet loss in the network.
Resumo:
An equation is presented for calculating the fairness of dynamically adaptive packet schedulers such as dynamic weighted fair queuing (DWFQ). The fairness of static packet schedulers such as weighted fair queue (WFQ) can be found using the widely accepted Worst-case Fair Index. The fairness of DWFQ can be measured using an Adapted Worst-case Fairness Index (AWFI). The AWFI enables a direct comparison of fairness properties of the DWFQ or other dynamically adaptive schedulers with static/non-adaptive schedulers.