968 resultados para Spondylitis Susceptibility
Resumo:
The distinctly cyclic sediments recovered during ODP Leg 154 played an important role in constructing the astronomical time scale and associated astro(bio)chronology for the Miocene, and in deciphering ocean-climate history. The accuracy of the timescale critically depends on the reliability of the shipboard splice used for the tuning and on the tuning itself. New high-resolution colour- and magnetic susceptibility core scanning data supplemented with limited XRF-data allow improvement of the stratigraphy. The revised composite record results in an improved astronomical age model for ODP Site 926 between 5 and 14.4 Ma. The new age model is confirmed by results of complex amplitude demodulation of the precession and obliquity related cycle patterns. Different values for tidal dissipation are applied to improve the fit between the sedimentary cycle patterns and the astronomical solution. Due to the improved stratigraphy and tuning, supported by the results of amplitude demodulation, the revised time scale yields more reliable age estimates for planktic foraminiferal and calcareous nannofossil events. The results of this study highlight the importance of stratigraphy for timescale construction.
Anisotropy-magnetic susceptibility from the Krems Wachtberg archaeological Site (Austria), section 2
Resumo:
Deep marine successions of early Campanian age from DSDP site 516F drilled at low paleolatitudes in the South Atlantic reveal distinct sub-Milankovitch variability in addition to precession and eccentricity related variations. Elemental abundance ratios point to a similar 5 climatic origin for these variations and exclude a quadripartite structure - as observed in the Mediterranean Neogene - of the precession related cycles as an explanation for the inferred semi-precession cyclicity in MS. However, the semi-precession cycle itself is likely an artifact, reflecting the first harmonic of the precession signal. The sub-Milankovitch variability is best approximated by a ~ 7 kyr cycle as shown by 10 spectral analysis and bandpass filtering. The presence of sub-Milankovitch cycles with a period similar to that of Heinrich events of the last glacial cycle is consistent with linking the latter to low-latitude climate change caused by a non-linear response to precession induced variations in insolation between the tropics.
Resumo:
Ocean Drilling Program (ODP) Sites 832 and 833 were drilled in the intra-arc North Aoba Basin of the New Hebrides Island Arc (Vanuatu). High volcanic influxes in the intra-arc basin sediment resulting from erosion of volcanic rocks from nearby islands and from volcanic activity are associated with characteristic magnetic signals. The high magnetic susceptibility in the sediment (varying on average from 0.005 to more than 0.03 SI) is one of the most characteristic physical properties of this sedimentary depositional environment because of the high concentration of magnetites in redeposited ash flows and in coarse-grained turbidites. Susceptibility data correlate well with the high resolution electrical resistivity logs recorded by the formation microscanner (FMS) tool. Unlike the standard geophysical logs, which have low vertical resolution and therefore smooth the record of the sedimentary process, the FMS and whole-core susceptibility data provide a clearer picture of turbiditic sediment deposition. Measurements of Curie temperatures and low-temperature susceptibility behavior indicate that the principal magnetic minerals in ash beds, silt, and volcanic sandstone are Ti-poor titanomagnetite, whereas Ti-rich titanomagnetites are found in the intrusive sills at the bottom of Site 833. Apart from an increase in the concentration of magnetite in the sandstone layer, acquisition of isothermal and anhysteretic remanences does not show significant differences between sandstone and clayey silts. The determination of the anisotropy of magnetic susceptibility (AMS) in more than 400 samples show that clayey siltstone have a magnetic anisotropy up to 15%, whereas the AMS is much reduced in sandstone layers. The magnetic susceptibility fabric is dominated by the foliation plane, which is coplanar to the bedding plane. Reorientations of the samples using characteristic remanent magnetizations indicate that the bedding planes dip about 10° toward the east, in agreement with results from FMS images. Basaltic sills drilled at Site 833 have high magnetic susceptibilities (0.05 to 0.1 SI) and strong remanent magnetizations. Magnetic field anomalies up to 50 µT were measured in the sills by the general purpose inclinometer tool (GPIT). The direction of the in-situ magnetic anomaly vectors, calculated from the GPIT, is oriented toward the southeast with shallow inclinations which suggests that the sill intruded during a reversed polarity period.
Resumo:
The coastal systems, are often subjected to high anthropogenic pressure, which makes it necessary to develop new techniques to assess the environmental impacts caused by such human activity. This paper presents the first results obtained during the development and implementation of a new equipment of submarine geophysics survey oriented to integrated coastal zone management (ICZM). It is based on the drag of a submarine in contact with the sea-bottom. The submarine is equipped with an electromagnetic sensor which allows the measurement of the magnetic susceptibility and electrical conductivity of the surface sediments continuously and to a depth of sediment of 40 cm. This system, once improved, will allow us to obtain valuable information for monitoring the environmental quality of coastal areas.
Resumo:
The Prydz Bay area is a key region for studying and understanding the history of the eastern Antarctic Continental Ice Sheet (O'Brien, Cooper, Richter, et al., 2001, doi:10.2973/odp.proc.ir.188.2001). Ocean Drilling Program (ODP) Site 1165 is situated in a water depth of 3357 m on the continental rise offshore from Prydz Bay and lies in front of the outlet for the Lambert Glacier-Amery Ice Shelf system that today drains 22% of East Antarctica. The site was drilled into mixed pelagic and hemipelagic sediments from the southwestern side of the Wild Drift. The drift is an elongate sediment body formed by the interaction of sediment supplied from continental shelf and slope with westward-flowing bottom currents. The sedimentary sequence is characterized by alternations between a generally gray to dark gray facies and a green to greenish gray facies. The greenish facies are structureless diatom-bearing clays with common bioturbation and larger amounts (>15%-20%) of biogenic silica, dispersed clasts, and lonestones than the dark gray facies, which are mostly less bioturbated clay with some silt laminations (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.188.103.2001). High-quality advanced piston corer and extended core barrel cores containing nearly complete sections of middle Miocene to early Pliocene age allow a detailed characterization of sedimentary cycles and can provide indications for ice advances of the Lambert Glacier system into Prydz Bay, for the extent of sea ice, and for changes in oceanic circulation. The purpose of this work is to provide a data set of coarse-fraction mass percentage (>63, >125, and >250 µm) and biogenic silica content measured on sediments of late Miocene to early Pliocene age drilled at Site 1165. Additionally, high-resolution records of magnetic susceptibility (MS) and gamma ray attenuation (GRA) bulk density are presented. These shipboard data sets were edited postcruise. Furthermore, I provide a high-resolution dry bulk density record that is derived from GRA bulk density and can be used for the calculation of mass accumulation rates. These sedimentological and physical parameters will be used in future work to understand the depositional pattern of alternating biogenic and terrigenous sediments that was observed at Site 1165 (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.188.103.2001).
Resumo:
Basalts from Hole 534A are among the oldest recovered from the ocean bottom, dating from the opening of the Atlantic 155 Ma. Upon exposure to a 1-Oe field for one week, these basalts acquire a viscous remanent magnetization (VRM), which ranges from 4 to 223% of their natural remanent magnetization (NRM). A magnetic field of similar magnitude is observed in the paleomagnetic lab of the Glomar Challenger, and it is therefore doubtful if accurate measurements of magnetic moment in such rocks can be made on board unless the paleomagnetic area is magnetically shielded. No correlation is observed between the Konigsberger ratio (beta), which is usually less than 3, and the ability to acquire a VRM. The VRM shows both a log t dependence and a Richter aftereffect. Both of these, but especially the log t dependence, will cause the susceptibility measurements (made by applying a magnetic field for a very short time) to be minimum values. The susceptibility and derived Q should therefore be used cautiously for magnetic anomaly interpretation, because they can cause the importance of the induced magnetization to be underestimated.
Resumo:
Distribution, accumulation and diagenesis of surficial sediments in coastal and continental shelf systems follow complex chains of localized processes and form deposits of great spatial variability. Given the environmental and economic relevance of ocean margins, there is growing need for innovative geophysical exploration methods to characterize seafloor sediments by more than acoustic properties. A newly conceptualized benthic profiling and data processing approach based on controlled source electromagnetic (CSEM) imaging permits to coevally quantify the magnetic susceptibility and the electric conductivity of shallow marine deposits. The two physical properties differ fundamentally insofar as magnetic susceptibility mostly assesses solid particle characteristics such as terrigenous or iron mineral content, redox state and contamination level, while electric conductivity primarily relates to the fluid-filled pore space and detects salinity, porosity and grain-size variations. We develop and validate a layered half-space inversion algorithm for submarine multifrequency CSEM with concentric sensor configuration. Guided by results of modeling, we modified a commercial land CSEM sensor for submarine application, which was mounted into a nonconductive and nonmagnetic bottom-towed sled. This benthic EM profiler Neridis II achieves 25 soundings/second at 3-4 knots over continuous profiles of up to hundred kilometers. Magnetic susceptibility is determined from the 75 Hz in-phase response (90% signal originates from the top 50 cm), while electric conductivity is derived from the 5 kHz out-of-phase (quadrature) component (90% signal from the top 92 cm). Exemplary survey data from the north-west Iberian margin underline the excellent sensitivity, functionality and robustness of the system in littoral (~0-50 m) and neritic (~50-300 m) environments. Susceptibility vs. porosity cross-plots successfully identify known lithofacies units and their transitions. All presently available data indicate an eminent potential of CSEM profiling for assessing the complex distribution of shallow marine surficial sediments and for revealing climatic, hydrodynamic, diagenetic and anthropogenic factors governing their formation.
Resumo:
The Schwalbenberg II loess-paleosol sequence (LPS) denotes a key site for Marine Isotope Stage (MIS 3) in Western Europe owing to eight succeeding cambisols, which primarily constitute the Ahrgau Subformation. Therefore, this LPS qualifies as a test candidate for the potential of temporal high-resolution geochemical data obtained X-ray fluorescence (XRF) scanning of discrete samplesproviding a fast and non-destructive tool for determining the element composition. The geochemical data is first contextualized to existing proxy data such as magnetic susceptibility (MS) and organic carbon (Corg) and then aggregated to element log ratios characteristic for weathering intensity [LOG (Ca/Sr), LOG (Rb/Sr), LOG (Ba/Sr), LOG (Rb/K)] and dust provenance [LOG (Ti/Zr), LOG (Ti/Al), LOG (Si/Al)]. Generally, an interpretation of rock magnetic particles is challenged in western Europe, where not only magnetic enhancement but also depletion plays a role. Our data indicates leaching and top-soil erosion induced MS depletion at the Schwalbenberg II LPS. Besides weathering, LOG (Ca/Sr) is susceptible for secondary calcification. Thus, also LOG (Rb/Sr) and LOG (Ba/Sr) are shown to be influenced by calcification dynamics. Consequently, LOG (Rb/K) seems to be the most suitable weathering index identifying the Sinzig Soils S1 and S2 as the most pronounced paleosols for this site. Sinzig Soil S3 is enclosed by gelic gleysols and in contrast to S1 and S2 only initially weathered pointing to colder climate conditions. Also the Remagen Soils are characterized by subtle to moderate positive excursions in the weathering indices. Comparing the Schwalbenberg II LPS with the nearby Eifel Lake Sediment Archive (ELSA) and other more distant German, Austrian and Czech LPS while discussing time and climate as limiting factors for pedogenesis, we suggest that the lithologically determined paleosols are in-situ soil formations. The provenance indices document a Zr-enrichment at the transition from the Ahrgau to the Hesbaye Subformation. This is explained by a conceptual model incorporating multiple sediment recycling and sorting effects in eolian and fluvial domains.