906 resultados para Slot-based task-splitting algorithms
Resumo:
Based on the conventional through-short-match (TSM) method, an improved TSM method has been proposed in this Letter. This method gives an analytical solution and has almost all the advantages of conventional TSM methods. For example, it has no phase uncertainty and no bandwidth limitation. The experimental results show that the accuracy can be significantly improved with this method. The proposed theory can be applied to the through-open-match (TOM) method. (C) 2002 Wiley Periodicals. Inc.
Resumo:
Double weighted neural network; is a kind of new general used neural network, which, compared with BP and RBF network, may approximate the training samples with a move complicated geometric figure and possesses a even greater approximation. capability. we study structure approximate based on double weighted neural network and prove its rationality.
Resumo:
Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system. by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level policies. We proposed two PAY policies-Back propagation Power Management (BPPM) and Radial Basis Function Power management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79,145,1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.
Resumo:
Automatic molecular classification of cancer based on DNA microarray has many advantages over conventional classification based on morphological appearance of the tumor. Using artificial neural networks is a general approach for automatic classification. In this paper, Direction-Basis-Function neuron and Priority-Ordered algorithm are applied to neural networks. And the leukemia gene expression dataset is used as an example to testify the classifier. The result of our method is compared to that of SVM. It shows that our method makes a better performance than SVM.
Resumo:
A novel geometric algorithm for blind image restoration is proposed in this paper, based on High-Dimensional Space Geometrical Informatics (HDSGI) theory. In this algorithm every image is considered as a point, and the location relationship of the points in high-dimensional space, i.e. the intrinsic relationship of images is analyzed. Then geometric technique of "blurring-blurring-deblurring" is adopted to get the deblurring images. Comparing with other existing algorithms like Wiener filter, super resolution image restoration etc., the experimental results show that the proposed algorithm could not only obtain better details of images but also reduces the computational complexity with less computing time. The novel algorithm probably shows a new direction for blind image restoration with promising perspective of applications.
Resumo:
Ontologies play a core role to provide shared knowledge models to semantic-driven applications targeted by Semantic Web. Ontology metrics become an important area because they can help ontology engineers to assess ontology and better control project management and development of ontology based systems, and therefore reduce the risk of project failures. In this paper, we propose a set of ontology cohesion metrics which focuses on measuring (possibly inconsistent) ontologies in the context of dynamic and changing Web. They are: Number of Ontology Partitions (NOP), Number of Minimally Inconsistent Subsets (NMIS) and Average Value of Axiom Inconsistencies (AVAI). These ontology metrics are used to measure ontological semantics rather than ontological structure. They are theoretically validated for ensuring their theoretical soundness, and further empirically validated by a standard test set of debugging ontologies. The related algorithms to compute these ontology metrics also are discussed. These metrics proposed in this paper can be used as a very useful complementarity of existing ontology cohesion metrics.
Resumo:
With the continuous changes in application requirements of the enterprises, Web resources must be updated, so do the underlying ontologies that are associated with the Web resources. In the situation, it is very challenging for ontological engineers to specify the changes of ontologies, keep their consistencies and achieve semantic query of Web resources based on the evolving ontologies. We propose a construct called Prioritized Knowledge Base (PKB) based on SHOQ(D) description logic, and discuss some properties of PKB.PKB can be used for describing the evolutions and updates of ontologies with conflicting information. Furthermore, we develop some algorithms for checking conflict rules and performing semantic query based on PKB.
Resumo:
Interactive intention understanding is important for Pen-based User Interface (PUI). Many works on this topic are reported, and focus on handwriting or sketching recognition algorithms at the lexical layer. But these algorithms cannot totally solve the problem of intention understanding and can not provide the pen-based software with high usability. Hence, a scenario-based interactive intention understanding framework is presented in this paper, and is used to simulate human cognitive mechanisms and cognitive habits. By providing the understanding environment supporting the framework, we can apply the framework to the practical PUI system. The evaluation of the Scientific Training Management System for the Chinese National Diving Team shows that the framework is effective in improving the usability and enhancing the intention understanding capacity of this system.
Resumo:
The spin splitting in GaN-based heterostructures has been investigated by means of circular photogalvanic effect experiments under uniaxial strain. The ratios of Rashba and Dresselhaus spin-orbit coupling coefficients (R/D ratios) have been measured in AlxGa1-xN/GaN heterostructures with various Al compositions. It is found that the R/D ratio increases from 4.1 to 19.8 with the Al composition of the AlxGa1-xN barrier varied from 15% to 36%. The Dresselhaus coefficient of bulk GaN is experimentally obtained to be 0.4 eV angstrom(3). The results indicate that the spin splitting in GaN-based heterostructures can be modulated effectively by the polarization-induced electric fields.
The statistic inversion algorithms of water constituents for the Huanghai Sea and the East China Sea
Resumo:
A group of statistical algorithms are proposed for the inversion of the three major components of Case-H waters in the coastal area of the Huanghai Sea and the East China Sea. The algorithms are based on the in situ data collected in the spring of 2003 with strict quality assurance according to NASA ocean bio-optic protocols. These algorithms are the first ones with quantitative confidence that can be applied for the area. The average relative error of the inversed and in situ measured components' concentrations are: Chl-a about 37%, total suspended matter (TSM) about 25%, respectively. This preliminary result is quite satisfactory for Case-H waters, although some aspects in the model need further study. The sensitivity of the input error of 5% to remote sensing reflectance (Rrs) is also analyzed and it shows the algorithms are quite stable. The algorithms show a large difference with Tassan's local SeaWiFS algorithms for different waters, except for the Chl-a algorithm.
Resumo:
The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System- (EOS-) Terra/Aqua satellite,as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water,heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.
Resumo:
该文以一实际应用为背景提出了多移动机器人避碰及死锁预防算法 ,该算法将机器人的运行环境形式化地描述为初等运动集、冲突图、总任务集及机器人作业集 ,利用集合论、图论的有关方法及技术实现了多机器人间的避碰与死锁预防 .当机器人的运行环境改变时 ,只需要对相应的集合描述文件进行修改 ,而不用对程序做任何改动 .算法的另一个特点是利用避碰算法巧妙地完成了死锁预防 .仿真和实际运行证明了该算法高效可靠 .