940 resultados para Ru(II) complexes
Resumo:
Smooth thin films of three kinds of nickel(II)-azo complexes were prepared by the spin-coating method. Absorption spectra of the thin films on K9 glass substrate in the 300-600 nn wavelength region were measured. Optical constants (complex refractive index N = n + ik) and thickness of the thin films prepared on single-crystal silicon substrate in the 300-600 nm wavelength region were investigated on rotating analyzer-polarizer type of scanning ellipsometer, and dielectric constants epsilon (epsilon = epsilon(1) + i epsilon(2)), absorption coefficients a as well as reflectance R of thin films were then calculated at 405 nm. In addition, in order to examine the possible use of nickel(II)-azo complex thin film as an optical recording medium, one of the nickel(II)-azo complex thin film prepared on K9 glass substrate with an Ag reflective layer was also studied by atomic force microscopy and static optical recording. The results show that the nickel(II)-azo complex thin film is smooth and has a root mean square surface roughness of 2.25 nm, and the recording marks on the nickel(II)-azo complex thin film are very clear and circular, and their size can reach 200 nn or less. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Two kinds of nickel(II) and copper(II) P-diketone complexes derived from thenoyltrifluoroacetone ligand with blue-violet light absorption were synthesized by reacting free ligand and different metal(II) ions in sodium methoxide solution. Their structures were postulated based on elemental analysis, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption properties of thin film and thermal stability of these complexes were evaluated. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In order to solidify the electrochemiluminescence (ECL) luminophor tris(2,2'-bipyridyl) ruthenium(II) ([Ru(bpy)(3)](2+)) onto the electrode surfaces robustly, the negative charged heteropolyacids (HPAs) moieties were utilized to attract and bond cations [Ru(bpy)(3)](2+) via an adsorption method. The compositions and microstructures of the hybrid complexes were characterized by elemental analysis (EDS), spectroscopic techniques (UV-vis, FTIR) and field-emission scanning electron microscopy (FE-SEM). The electrochemical and ECL behaviors of the [Ru(bpy)(3)](2+)/[PW12O40](3-) hybrid complex contained in the solid film of the nanocomposites formed on the electrode surfaces were also studied.
Resumo:
The electrochemical and electrogenerated chemiluminescence of Ru(bpy)(3)(2+) immobilized in {clay/Ru(bpy)(3)(2+)}(n) multilayer films by layer-by-layer assembly were investigated. The stable multilayer films of clay and Ru(bpy)(3)(2+) were assembled by alternate adsorption of negatively charged clay platelets and positively charged Ru(bpy)(3)(2+) from their aqueous dispersions. UV-vis spectroscopy, quartz crystal microbalance (QCM), cyclic voltammetry, and electrogenerated chemiluminescence (ECL) were used to monitor the immobilization of Ru( bpy)(3)(2+) and the regular growth of the {clay/Ru( bpy)(3)(2+)}(n) multilayer films. The multilayer films modified electrode was used for the ECL detection of tripropylamine ( TPA) and oxalate. The proposed novel immobilized method exhibited good stability, reproducibility and high sensitivity for the determination of TPA and oxalate, which mainly resulted from the contributing of clay nanoparticles with appreciable surface area, special structural features and unusual intercalation properties.
Resumo:
Fe(II) pyridinebisimine complexes activated with trialkylaluminium or modified methylaluminoxane (MMAO) as catalysts were employed for the polymerization of methyl methacrylate. Polymer yields, activities and polymer molecular weights as well as molecular weight distributions can be controlled over a wide range by the variation of the structures of the Fe(II) pyridinebisimine complexes and the reaction parameters such as Al/Fe molar ratio, monomer/catalyst molar ratio, monomer concentration, reaction temperature and time applied to the polymerization of methyl methacrylate. Under optimum condition, the catalytic activity of Fe(II) complex is of up to 74.5 kg(polym)/mol(Fe)h.
Resumo:
A sensitive electrochemiluminescent detection scheme by solid-phase extraction at Ru(bpy)(3)(2+)-modified ceramic carbon electrodes (CCEs) was developed. The as-prepared Ru(bpy)(3)(2+)-modified CCEs show much better long-term stability than other Nafion-based Ru(bpy)(3)(2+)-modified electrodes and enjoy the inherent advantages of CCEs. The log-log calibration plot for dioxopromethazine is linear from 1.0 x 10(-9) to 1.0 x 10(-4) mol L-1 using the new detection scheme. The detection limit is 6.6 x 10(-10) mol L-1 at a signal-to-noise ratio of 3. The new scheme improves the sensitivity by similar to 3 orders of magnitude, which is the most sensitive Ru(bpy)(3)(2+) ECL method. The scheme allows the detection of dioxopromethazine in a urine sample within 3 min. Since Ru(bpy)(3)(2+) ECL is a powerful technique for determination of numerous amine-containing substances, the new detection scheme holds great promise in measurement of free concentrations, investigation of protein-drug interactions and DNA-drug interactions, pharmaceutical analysis, and so on.
Resumo:
An electrochemiluminescence (ECL) sensor with good long-term stability and fast response time has been developed. The sensor was based on the immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) into the Eastman-AQ55D-silica composite thin films on a glassy carbon electrode. The ECL and electrochemistry of Ru(bpy)(3)(2+) immobilized in the composite thin films have been investigated, and the modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and chlorpromazine (CPZ) in a flow injection analysis system and showed high sensitivity. Because of the strong electrostatic interaction and low hydrophobicity of Eastman-AQ55D, the sensor showed no loss of response over 2 months of dry storage. In use, the electrode showed only a 5% decrease in response over 100 potential cycles. The detection limit was 1 mumol l(-1) for oxalate and 0.1 mumol l(-1) for both TPA and CPZ (S/N = 3), respectively. The linear range extended from 50 mumol l(-1) to 5 mmol l(-1) for oxalate, from 20 mumol l(-1) to 1 mmol l(-1) for TPA, and from 1 mumol l(-1) to 200 mumol l(-1) for CPZ.
Resumo:
The organic-inorganic hybrid, PSS-silica composite material was developed for the immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) on glassy carbon electrode via ion-exchange (PSS stands for poly(sodium 4-styrene-sulfonate)). The electrochemiluminescence (ECL) and electrochemistry of Ru(bpy)(3)(2-) immobilized in the composite thin films have been investigated with tripropylamine (TPA) as the coreactant. The immobilized Ru(bpy)(3)(2-) underwent a surface process. The modified electrode was used for the ECL detection of TPA and showed high sensitivity. Detection limit was 0,1 mumol L-1 for TPA (S/N = 3) with a linear range from 0.5 mumol L-1 to 5 mmol L-1 (R = 0.998), Moreover, the resulting modified electrode was stable over six months and the good stability may be due to the strong interaction between Ru(bpy)(3)(2-) and the high ion-exchange able PSS-silica composite films on GCE. Compared with other materials. the PSS-silica composite films containing incorporated Ru(bpy)(3)(2-) showed improved sensitivity and long-term stability, Thus, such composite thin film can be a promising material for the construction of ECL sensor.