818 resultados para Robust Regression
Resumo:
Purpose: To investigate the rate of visual field and optic disc change in patients with distinct patterns of glaucomatous optic disc damage. Design: Prospective longitudinal study. Participants: A total of 131 patients with open-angle glaucoma with focal (n = 45), diffuse (n = 42), and sclerotic (n = 44) optic disc damage. Methods: Patients were examined every 4 months with standard automated perimetry (SAP, SITA Standard, 24-2 test, Humphrey Field Analyzer, Carl Zeiss Meditec, Dublin, CA) and confocal scanning laser tomography (CSLT, Heidelberg Retina Tomograph, Heidelberg Engineering GmbH, Heidelberg, Germany) for a period of 4 years. During this time, patients were treated according to a predefined protocol to achieve a target intraocular pressure (IOP). Rates of change were estimated by robust linear regression of visual field mean deviation (MD) and global optic disc neuroretinal rim area with follow-up time. Main Outcome Measures: Rates of change in MD and rim area. Results: Rates of visual field change in patients with focal optic disc damage (mean -0.34, standard deviation [SD] 0.69 dB/year) were faster than in patients with sclerotic (mean - 0.14, SD 0.77 dB/year) and diffuse (mean + 0.01, SD 0.37 dB/year) optic disc damage (P = 0.003, Kruskal-Wallis). Rates of optic disc change in patients with focal optic disc damage (mean - 11.70, SD 25.5 x 10(-3) mm(2)/year) were faster than in patients with diffuse (mean -9.16, SD 14.9 x 10(-3) mm(2)/year) and sclerotic (mean -0.45, SD 20.6 x 10(-3) mm(2)/year) optic disc damage, although the differences were not statistically significant (P = 0.11). Absolute IOP reduction from untreated levels was similar among the groups (P = 0.59). Conclusions: Patients with focal optic disc damage had faster rates of visual field change and a tendency toward faster rates of optic disc deterioration when compared with patients with diffuse and sclerotic optic disc damage, despite similar IOP reductions during follow-up. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references. Ophthalmology 2012; 119: 294-303 (C) 2012 by the American Academy of Ophthalmology.
Resumo:
Determination of the utility harmonic impedance based on measurements is a significant task for utility power-quality improvement and management. Compared to those well-established, accurate invasive methods, the noninvasive methods are more desirable since they work with natural variations of the loads connected to the point of common coupling (PCC), so that no intentional disturbance is needed. However, the accuracy of these methods has to be improved. In this context, this paper first points out that the critical problem of the noninvasive methods is how to select the measurements that can be used with confidence for utility harmonic impedance calculation. Then, this paper presents a new measurement technique which is based on the complex data-based least-square regression, combined with two techniques of data selection. Simulation and field test results show that the proposed noninvasive method is practical and robust so that it can be used with confidence to determine the utility harmonic impedances.
Resumo:
Objective: To evaluate suicide rates and trends in Sao Paulo by sex, age-strata, and methods. Methods: Data was collected from State registry from 1996 to 2009. Population was estimated using the National Census. We utilized joinpoint regression analysis to explore temporal trends. We also evaluated marital status, ethnicity, birthplace and methods for suicide. Results: In the period analyzed, 6,002 suicides were accrued with a rate of 4.6 per 100,000 (7.5 in men and 2.0 in women); the male-to-female ratio was around 3.7. Trends for men presented a significant decline of 5.3% per year from 1996 to 2002, and a significant increase of 2.5% from 2002 onwards. Women did not present significant changes. For men, the elderly (> 65 years) had a significant reduction of 2.3% per year, while younger men (25-44 years) presented a significant increase of 8.6% from 2004 onwards. Women did not present significant trend changes according to age. Leading suicide methods were hanging and poisoning for men and women, respectively. Other analyses showed an increased suicide risk ratio for singles and foreigners. Conclusions: Specific epidemiological trends for suicide in the city of Sao Paulo that warrant further investigation were identified. High-risk groups - such as immigrants - could benefit from targeted strategies of suicide prevention.
Resumo:
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Resumo:
In this paper we extend semiparametric mixed linear models with normal errors to elliptical errors in order to permit distributions with heavier and lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum penalized likelihood estimates (MPLEs) which appear to be robust against outlying observations in the sense of the Mahalanobis distance. A reweighed iterative process based on the back-fitting method is proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to study the sensitivity of the MPLEs. Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.
Resumo:
Abstract Background With the development of DNA hybridization microarray technologies, nowadays it is possible to simultaneously assess the expression levels of thousands to tens of thousands of genes. Quantitative comparison of microarrays uncovers distinct patterns of gene expression, which define different cellular phenotypes or cellular responses to drugs. Due to technical biases, normalization of the intensity levels is a pre-requisite to performing further statistical analyses. Therefore, choosing a suitable approach for normalization can be critical, deserving judicious consideration. Results Here, we considered three commonly used normalization approaches, namely: Loess, Splines and Wavelets, and two non-parametric regression methods, which have yet to be used for normalization, namely, the Kernel smoothing and Support Vector Regression. The results obtained were compared using artificial microarray data and benchmark studies. The results indicate that the Support Vector Regression is the most robust to outliers and that Kernel is the worst normalization technique, while no practical differences were observed between Loess, Splines and Wavelets. Conclusion In face of our results, the Support Vector Regression is favored for microarray normalization due to its superiority when compared to the other methods for its robustness in estimating the normalization curve.
Resumo:
Abstract Background Smear negative pulmonary tuberculosis (SNPT) accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.
A Robust Structural PGN Model for Control of Cell-Cycle Progression Stabilized by Negative Feedbacks
Resumo:
The cell division cycle comprises a sequence of phenomena controlled by a stable and robust genetic network. We applied a probabilistic genetic network (PGN) to construct a hypothetical model with a dynamical behavior displaying the degree of robustness typical of the biological cell cycle. The structure of our PGN model was inspired in well-established biological facts such as the existence of integrator subsystems, negative and positive feedback loops, and redundant signaling pathways. Our model represents genes interactions as stochastic processes and presents strong robustness in the presence of moderate noise and parameters fluctuations. A recently published deterministic yeast cell-cycle model does not perform as well as our PGN model, even upon moderate noise conditions. In addition, self stimulatory mechanisms can give our PGN model the possibility of having a pacemaker activity similar to the observed in the oscillatory embryonic cell cycle.
Resumo:
This work proposes a computational tool to assist power system engineers in the field tuning of power system stabilizers (PSSs) and Automatic Voltage Regulators (AVRs). The outcome of this tool is a range of gain values for theses controllers within which there is a theoretical guarantee of stability for the closed-loop system. This range is given as a set of limit values for the static gains of the controllers of interest, in such a way that the engineer responsible for the field tuning of PSSs and/or AVRs can be confident with respect to system stability when adjusting the corresponding static gains within this range. This feature of the proposed tool is highly desirable from a practical viewpoint, since the PSS and AVR commissioning stage always involve some readjustment of the controller gains to account for the differences between the nominal model and the actual behavior of the system. By capturing these differences as uncertainties in the model, this computational tool is able to guarantee stability for the whole uncertain model using an approach based on linear matrix inequalities. It is also important to remark that the tool proposed in this paper can also be applied to other types of parameters of either PSSs or Power Oscillation Dampers, as well as other types of controllers (such as speed governors, for example). To show its effectiveness, applications of the proposed tool to two benchmarks for small signal stability studies are presented at the end of this paper.
Resumo:
OBJECTIVE: To evaluate suicide rates and trends in São Paulo by sex, age-strata, and methods. METHODS: Data was collected from State registry from 1996 to 2009. Population was estimated using the National Census. We utilized joinpoint regression analysis to explore temporal trends. We also evaluated marital status, ethnicity, birthplace and methods for suicide. RESULTS: In the period analyzed, 6,002 suicides were accrued with a rate of 4.6 per 100,000 (7.5 in men and 2.0 in women); the male-to-female ratio was around 3.7. Trends for men presented a significant decline of 5.3% per year from 1996 to 2002, and a significant increase of 2.5% from 2002 onwards. Women did not present significant changes. For men, the elderly (> 65 years) had a significant reduction of 2.3% per year, while younger men (25-44 years) presented a significant increase of 8.6% from 2004 onwards. Women did not present significant trend changes according to age. Leading suicide methods were hanging and poisoning for men and women, respectively. Other analyses showed an increased suicide risk ratio for singles and foreigners. CONCLUSIONS: Specific epidemiological trends for suicide in the city of São Paulo that warrant further investigation were identified. High-risk groups - such as immigrants - could benefit from targeted strategies of suicide prevention.
Resumo:
Over the last decade, molecular phylogenetics has called into question some fundamental aspects of coral systematics. Within the Scleractinia, most families composed exclusively by zooxanthellate species are polyphyletic on the basis of molecular data, and the second most speciose coral family, the Caryophylliidae (most members of which are azooxanthellate), is an unnatural grouping. As part of the process of resolving taxonomic affinities of caryophylliids', here a new Robust' scleractinian family (Deltocyathiidae fam. n.) is proposed on the basis of combined molecular (CO1 and 28S rDNA) and morphological data, accommodating the early-diverging clade of traditional caryophylliids (represented today by the genus Deltocyathus). Whereas this family captures the full morphological diversity of the genus Deltocyathus, one species, Deltocyathus magnificus, is an outlier in terms of molecular data, and groups with the Complex coral family Turbinoliidae. Ultrastructural data, however, place D.magnificus within Deltocyathiidae fam. nov. Unfortunately, limited ultrastructural data are as yet available for turbinoliids, but D.magnificus may represent the first documented case of morphological convergence at the microstructural level among scleractinian corals. Marcelo V.Kitahara, Centro de Biologia Marinha, Universidade de SAo Paulo, SAo SebastiAo, S.P. 11600-000, Brazil. E-mail:kitahara@usp.br
Resumo:
[EN] The accuracy and performance of current variational optical ow methods have considerably increased during the last years. The complexity of these techniques is high and enough care has to be taken for the implementation. The aim of this work is to present a comprehensible implementation of recent variational optical flow methods. We start with an energy model that relies on brightness and gradient constancy terms and a ow-based smoothness term. We minimize this energy model and derive an e cient implicit numerical scheme. In the experimental results, we evaluate the accuracy and performance of this implementation with the Middlebury benchmark database. We show that it is a competitive solution with respect to current methods in the literature. In order to increase the performance, we use a simple strategy to parallelize the execution on multi-core processors.
Resumo:
[EN] In this work, we describe an implementation of the variational method proposed by Brox et al. in 2004, which yields accurate optical flows with low running times. It has several benefits with respect to the method of Horn and Schunck: it is more robust to the presence of outliers, produces piecewise-smooth flow fields and can cope with constant brightness changes. This method relies on the brightness and gradient constancy assumptions, using the information of the image intensities and the image gradients to find correspondences. It also generalizes the use of continuous L1 functionals, which help mitigate the efect of outliers and create a Total Variation (TV) regularization. Additionally, it introduces a simple temporal regularization scheme that enforces a continuous temporal coherence of the flow fields.