972 resultados para Robots -- Computer programming
Resumo:
This paper presents a pattern recognition method focused on paintings images. The purpose is construct a system able to recognize authors or art styles based on common elements of his work (here called patterns). The method is based on comparing images that contain the same or similar patterns. It uses different computer vision techniques, like SIFT and SURF, to describe the patterns in descriptors, K-Means to classify and simplify these descriptors, and RANSAC to determine and detect good results. The method are good to find patterns of known images but not so good if they are not.
Resumo:
Nessie is an Autonomous Underwater Vehicle (AUV) created by a team of students in the Heriot Watt University to compete in the Student Autonomous Underwater Competition, Europe (SAUC-E) in August 2006. The main objective of the project is to find the dynamic equation of the robot, dynamic model. With it, the behaviour of the robot will be easier to understand and movement tests will be available by computer without the need of the robot, what is a way to save time, batteries, money and the robot from water inside itself. The object of the second part in this project is setting a control system for Nessie by using the model
Resumo:
In the future, robots will enter our everyday lives to help us with various tasks.For a complete integration and cooperation with humans, these robots needto be able to acquire new skills. Sensor capabilities for navigation in real humanenvironments and intelligent interaction with humans are some of the keychallenges.Learning by demonstration systems focus on the problem of human robotinteraction, and let the human teach the robot by demonstrating the task usinghis own hands. In this thesis, we present a solution to a subproblem within thelearning by demonstration field, namely human-robot grasp mapping. Robotgrasping of objects in a home or office environment is challenging problem.Programming by demonstration systems, can give important skills for aidingthe robot in the grasping task.The thesis presents two techniques for human-robot grasp mapping, directrobot imitation from human demonstrator and intelligent grasp imitation. Inintelligent grasp mapping, the robot takes the size and shape of the object intoconsideration, while for direct mapping, only the pose of the human hand isavailable.These are evaluated in a simulated environment on several robot platforms.The results show that knowing the object shape and size for a grasping taskimproves the robot precision and performance
Resumo:
The Condemned es un juego de lucha en dos dimensiones desarrollado en Flash CS4 y ActionScript 3. El juego consta de cuatro pantallas, en cada una de ellas el jugador se enfrenta a un enemigo controlado por el ordenador a través de una inteligencia artificial. En la creación de este videojuego se ha pasado por todas las fases de desarrollo: diseño gráfico de personajes y escenarios, programación y control de errores.
Resumo:
Reliable information is a crucial factor influencing decision-making and, thus, fitness in all animals. A common source of information comes from inadvertent cues produced by the behavior of conspecifics. Here we use a system of experimental evolution with robots foraging in an arena containing a food source to study how communication strategies can evolve to regulate information provided by such cues. The robots could produce information by emitting blue light, which the other robots could perceive with their cameras. Over the first few generations, the robots quickly evolved to successfully locate the food, while emitting light randomly. This behavior resulted in a high intensity of light near food, which provided social information allowing other robots to more rapidly find the food. Because robots were competing for food, they were quickly selected to conceal this information. However, they never completely ceased to produce information. Detailed analyses revealed that this somewhat surprising result was due to the strength of selection on suppressing information declining concomitantly with the reduction in information content. Accordingly, a stable equilibrium with low information and considerable variation in communicative behaviors was attained by mutation selection. Because a similar coevolutionary process should be common in natural systems, this may explain why communicative strategies are so variable in many animal species.
Resumo:
This paper introduces how artificial intelligence technologies can be integrated into a known computer aided control system design (CACSD) framework, Matlab/Simulink, using an object oriented approach. The aim is to build a framework to aid supervisory systems analysis, design and implementation. The idea is to take advantage of an existing CACSD framework, Matlab/Simulink, so that engineers can proceed: first to design a control system, and then to design a straightforward supervisory system of the control system in the same framework. Thus, expert systems and qualitative reasoning tools are incorporated into this popular CACSD framework to develop a computer aided supervisory system design (CASSD) framework. Object-variables an introduced into Matlab/Simulink for sharing information between tools
Resumo:
Black-box optimization problems (BBOP) are de ned as those optimization problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program). This paper is focussed on BBOPs that arise in the eld of insurance, and more speci cally in reinsurance problems. In this area, the complexity of the models and assumptions considered to de ne the reinsurance rules and conditions produces hard black-box optimization problems, that must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in BBOP, so new computational paradigms must be applied to solve these problems. In this paper we show the performance of two evolutionary-based techniques (Evolutionary Programming and Particle Swarm Optimization). We provide an analysis in three BBOP in reinsurance, where the evolutionary-based approaches exhibit an excellent behaviour, nding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.
Resumo:
Report for the scientific sojourn carried out at the School of Computing of the University of Dundee, United Kingdom, from 2010 to 2012. This document is a scientific report of the work done, main results, publications and accomplishment of the objectives of the 2-year post-doctoral research project with reference number BP-A 00239. The project has addressed the topic of older people (60+) and Information and Communication Technologies (ICT), which is a topic of growing social and research interest, from a Human-Computer Interaction perspective. Over a 2-year period (June 2010-June 2012), we have conducted classical ethnography of ICT use in a computer clubhouse in Scotland, addressing interaction barriers and strategies, social sharing practices in Social Network Sites, and ICT learning, and carried out rapid ethnographical studies related to geo-enabled ICT and e-government services towards supporting independent living and active ageing. The main results have provided a much deeper understanding of (i) the everyday use of Computer-Mediated Communication tools, such as video-chats and blogs, and its evolution as older people’s experience with ICT increases over time, (ii) cross-cultural aspects of ICT use in the north and south of Europe, (iii) the relevance of cognition over vision in interacting with geographical information and a wide range of ICT tools, despite common stereotypes (e.g. make things bigger), (iv) the important relationship offline-online to provide older people with socially inclusive and meaningful eservices for independent living and active ageing, (v) how older people carry out social sharing practices in the popular YouTube, (vi) their user experiences and (vii) the challenges they face in ICT learning and the strategies they use to become successful ICT learners over time. The research conducted in this project has been published in 17 papers, 4 in journals – two of which in JCR, 5 in conferences, 4 in workshops and 4 in magazines. Other public output consists of 10 invited talks and seminars.
Resumo:
In a number of programs for gene structure prediction in higher eukaryotic genomic sequences, exon prediction is decoupled from gene assembly: a large pool of candidate exons is predicted and scored from features located in the query DNA sequence, and candidate genes are assembled from such a pool as sequences of nonoverlapping frame-compatible exons. Genes are scored as a function of the scores of the assembled exons, and the highest scoring candidate gene is assumed to be the most likely gene encoded by the query DNA sequence. Considering additive gene scoring functions, currently available algorithms to determine such a highest scoring candidate gene run in time proportional to the square of the number of predicted exons. Here, we present an algorithm whose running time grows only linearly with the size of the set of predicted exons. Polynomial algorithms rely on the fact that, while scanning the set of predicted exons, the highest scoring gene ending in a given exon can be obtained by appending the exon to the highest scoring among the highest scoring genes ending at each compatible preceding exon. The algorithm here relies on the simple fact that such highest scoring gene can be stored and updated. This requires scanning the set of predicted exons simultaneously by increasing acceptor and donor position. On the other hand, the algorithm described here does not assume an underlying gene structure model. Indeed, the definition of valid gene structures is externally defined in the so-called Gene Model. The Gene Model specifies simply which gene features are allowed immediately upstream which other gene features in valid gene structures. This allows for great flexibility in formulating the gene identification problem. In particular it allows for multiple-gene two-strand predictions and for considering gene features other than coding exons (such as promoter elements) in valid gene structures.
Resumo:
One of the most relevant difficulties faced by first-year undergraduate students is to settle into the educational environment of universities. This paper presents a case study that proposes a computer-assisted collaborative experience designed to help students in their transition from high school to university. This is done by facilitating their first contact with the campus and its services, the university community, methodologies and activities. The experience combines individual and collaborative activities, conducted in and out of the classroom, structured following the Jigsaw Collaborative Learning Flow Pattern. A specific environment including portable technologies with network and computer applications has been developed to support and facilitate the orchestration of a flow of learning activities into a single integrated learning setting. The result is a Computer-Supported Collaborative Blended Learning scenario, which has been evaluated with first-year university students of the degrees of Software and Audiovisual Engineering within the subject Introduction to Information and Communications Technologies. The findings reveal that the scenario improves significantly students’ interest in their studies and their understanding about the campus and services provided. The environment is also an innovative approach to successfully support the heterogeneous activities conducted by both teachers and students during the scenario. This paper introduces the goals and context of the case study, describes how the technology was employed to conduct the learning scenario, the evaluation methods and the main results of the experience.
Resumo:
Communication is an indispensable component of animal societies, yet many open questions remain regarding the factors affecting the evolution and reliability of signalling systems. A potentially important factor is the level of genetic relatedness between signallers and receivers. To quantitatively explore the role of relatedness in the evolution of reliable signals, we conducted artificial evolution over 500 generations in a system of foraging robots that can emit and perceive light signals. By devising a quantitative measure of signal reliability, and comparing independently evolving populations differing in within-group relatedness, we show a strong positive correlation between relatedness and reliability. Unrelated robots produced unreliable signals, whereas highly related robots produced signals that reliably indicated the location of the food source and thereby increased performance. Comparisons across populations also revealed that the frequency for signal production-which is often used as a proxy of signal reliability in empirical studies on animal communication-is a poor predictor of signal reliability and, accordingly, is not consistently correlated with group performance. This has important implications for our understanding of signal evolution and the empirical tools that are used to investigate communication.
Resumo:
A major challenge in studying social behaviour stems from the need to disentangle the behaviour of each individual from the resulting collective. One way to overcome this problem is to construct a model of the behaviour of an individual, and observe whether combining many such individuals leads to the predicted outcome. This can be achieved by using robots. In this review we discuss the strengths and weaknesses of such an approach for studies of social behaviour. We find that robots-whether studied in groups of simulated or physical robots, or used to infiltrate and manipulate groups of living organisms-have important advantages over conventional individual-based models and have contributed greatly to the study of social behaviour. In particular, robots have increased our understanding of self-organization and the evolution of cooperative behaviour and communication. However, the resulting findings have not had the desired impact on the biological community. We suggest reasons for why this may be the case, and how the benefits of using robots can be maximized in future research on social behaviour.
Resumo:
The measurement of rigidity and perseveration respectively gets increasing importance in clinical psychodiagnostics. Recently we have developed a computer-assisted technique which allows to get information about inadequate persisting in psychic processes and behaviour within shortest time and to differentiate between psychopathological groups. 257 patients of both sexes who came for elucidation of their disorders to the department of clinical psychodiagnostics were investigated. The most significant differences between the groups were found in redundance of second degree (the patient has to press 10 buttons indiscriminately according to the beat of a metronom--standard condition) and in personal speed (the patient has to press 10 buttons as fast as possible--speed condition). Furthermore the psychopathological groups were ranged in the particular variables of rigidity according to their mean values and their average ranges the schizophrenics and effective psychoses were characterized by a high tendency of perseveration while the neurotics, patients with organic brain syndrome and alcohol and drug dependents showed more flexibility.