896 resultados para Respiratory chemoreception


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long-period grating (LPG) was written into a progressive three-layered single-mode fiber that was embedded into a flexible platform as a curvature sensor. The spectral location and profile of the LPGs were unaltered after implantation in the platform. The curvature sensitivity was 3.747 nm m with a resolution of ± 1.1 × 10-2 m-1. The bend sensor is intended to be part of a respiratory monitoring system and was tested on a resuscitation training manikin. © 2003 society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long-period grating (LPG) was written into a progressive three-layered single-mode fiber that was embedded into a flexible platform as a curvature sensor. The spectral location and profile of the LPGs were unaltered after implantation in the platform. The curvature sensitivity was 3.747 nm m with a resolution of ±1.1×10–2 m–1. The bend sensor is intended to be part of a respiratory monitoring system and was tested on a resuscitation training manikin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiration is a complex activity. If the relationship between all neurological and skeletomuscular interactions was perfectly understood, an accurate dynamic model of the respiratory system could be developed and the interaction between different inputs and outputs could be investigated in a straightforward fashion. Unfortunately, this is not the case and does not appear to be viable at this time. In addition, the provision of appropriate sensor signals for such a model would be a considerable invasive task. Useful quantitative information with respect to respiratory performance can be gained from non-invasive monitoring of chest and abdomen motion. Currently available devices are not well suited in application for spirometric measurement for ambulatory monitoring. A sensor matrix measurement technique is investigated to identify suitable sensing elements with which to base an upper body surface measurement device that monitors respiration. This thesis is divided into two main areas of investigation; model based and geometrical based surface plethysmography. In the first instance, chapter 2 deals with an array of tactile sensors that are used as progression of existing and previously investigated volumetric measurement schemes based on models of respiration. Chapter 3 details a non-model based geometrical approach to surface (and hence volumetric) profile measurement. Later sections of the thesis concentrate upon the development of a functioning prototype sensor array. To broaden the application area the study has been conducted as it would be fore a generically configured sensor array. In experimental form the system performance on group estimation compares favourably with existing system on volumetric performance. In addition provides continuous transient measurement of respiratory motion within an acceptable accuracy using approximately 20 sensing elements. Because of the potential size and complexity of the system it is possible to deploy it as a fully mobile ambulatory monitoring device, which may be used outside of the laboratory. It provides a means by which to isolate coupled physiological functions and thus allows individual contributions to be analysed separately. Thus facilitating greater understanding of respiratory physiology and diagnostic capabilities. The outcome of the study is the basis for a three-dimensional surface contour sensing system that is suitable for respiratory function monitoring and has the prospect with future development to be incorporated into a garment based clinical tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. RESULTS: Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. CONCLUSIONS: The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass properties do lead to increased volumetric yields without the need to resort to complex control or cultivation schemes. This is anticipated to be of particular value in the production of challenging targets such as membrane proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of haem limitation and iron restriction on cells of non typable Haemophilus influenzae were investigated. Haem limitation was achieved by adding concentrations of haem to growth media which resulted in substantial decreases in final cell yields. Iron restriction was achieved by substituting protoporphyrin IX (PPIX) for haem in the growth medium and adding an iron chelator to the system. The effect of these nutrient limitations on a) outer membrane composition, and b) respiratory systems of non typable H.influenzae was investigated. Several of the strains examined produced new PPIX-specific outer membrane proteins when cultured utilising PPIX as a porphyrin source. The immune response of patients with bronchiectasis to outer membrane antigens of H.influenzae cultured under iron-restricted conditions was analysed by ELISA and immunoblotting techniques. ELISA analysis revealed that individuals with severe bronchiectasis had high titres of antibodies directed against H.influenzae OMs in both serum and sputum. Immunoblotting with homologous serum showed that where PPIX-specific OMPs were produced they were antigenic and were recognised by patients' serum. This suggested that these H.influenzae OMPs may be expressed in vivo. Additionally, the development of the immune responses to non typable H.influenzae outer membrane antigens was investigated using a rat lung model. Bacteria encased in agar beads were inoculated intratracheally into rat lungs, infection was established, and the immune response monitored for 6 weeks. The animals developed antibodies to PPIX-specific OMPs during the course of infection, providing further evidence that H.influenzae express these novel OMP antigens when growing in vivo. Studies in vitro on respiratory systems of phenotypically altered H.influenzae showed that bacteria grown utilising PPIX as a porphyrin source, or under conditions of iron-restriction produced ten fold fewer cytochromes than cells grown in nutrient excess, while haem limited H.influenzae produced no detectable cytochromes. Respiration of various substrates was depressed in haem limited and in PPIX-grown cultures as compared with cells grown in nutrient excess.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The curvature sensors are based on long-period gratings (LPGs) written in a progressive three-layered fiber to render the LPGs insensitive to the refractive index external to the fiber. A curvature sensor consists of the fiber long-period grating laid on a carbon fiber ribbon, which is then encapsulated in a low-temperature curing silicone rubber. The sensors have a spectral sensitivity to curvature, d lambda/dR from similar to 7-nm m to similar to 9-nm m. The interrogation technique is borrowed from derivative spectroscopy and monitors the changes in the transmission spectral profile of the LPG's attenuation band due to curvature. The multiplexing of the sensors is achieved by spectrally matching a series of distributed feedback (DFB) lasers to the LPGs. The versatility of this sensing garment is confirmed by it being used on six other human subjects covering a wide range of body mass indices. Just six fully functional sensors are required to obtain a volumetric error of around 6%. (C) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porphyromonas gingivalis, a gram-negative anaerobe which is implicated in the etiology of active periodontitis, secretes degradative enzymes (gingipains) and sheds proinflammatory mediators (e.g., lipopolysaccharides [LPS]). LPS triggers the secretion of interleukin-8 (IL-8) from immune (72-amino-acid [aa] variant [IL-8(72aa)]) and nonimmune (IL-8(77aa)) cells. IL-8(77aa) has low chemotactic and respiratory burst-inducing activity but is susceptible to cleavage by gingipains. This study shows that both R- and K-gingipain treatments of IL-8(77aa) significantly enhance burst activation by fMLP and chemotactic activity (P < 0.05) but decrease burst activation and chemotactic activity of IL-8(72aa) toward neutrophil-like HL60 cells and primary neutrophils (P < 0.05). Using tandem mass spectrometry, we have demonstrated that R-gingipain cleaves 5- and 11-aa peptides from the N-terminal portion of IL-8(77aa) and the resultant peptides are biologically active, while K-gingipain removes an 8-aa N-terminal peptide yielding a 69-aa isoform of IL-8 that shows enhanced biological activity. During periodontitis, secreted gingipains may differentially affect neutrophil chemotaxis and activation in response to IL-8 according to the cellular source of the chemokine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to investigate possible mechanisms that may contribute to neutrophil hyperactivity and hyper-reactivity. One possibility is the presence of a neutrophil priming factors within the peripheral circulation of periodontitis patients. To examine this possibility differentiated HL-60 cells and primary neutrophils were studied in the presence and absence of plasma from periodontitis patients. In independent experiments, plasma was depleted of IL-8, GM-CSF, interferon-a, immunoglobulins and albumin. This work demonstrated that plasma factors such as IL-8, GM-CSF, and interferon-a present during periodontitis may contribute towards the reported hyperactive neutrophil phenotype. Furthermore, this work demonstrated that products from Pg may regulate neutrophil accumulation at infected periodontal sites by promoting gingipain-dependent modification of IL-8-77 into a more biologically active chemokine. To elucidate whether the oxidatively stressed environment that neutrophils are exposed to in periodontitis could influence hyperactivity and hyper-reactivity, neutrophils were depleted of glutathione. This work showed that during oxidative stress, where cellular redox-levels have been altered, neutrophils exhibit an increased respiratory burst. In conclusion, this work highlights the multiple mechanisms that may contribute to neutrophil hyperactivity and hyperreactivity including gingipain-modulated activity of IL-8 variants, the effect of host factors such as IL-8, GM-CSF, interferon-a on neutrophils priming and activation, and the shift of neutrophil GSH:GSSG ratio in favour of a more oxidised environment as observed in periodontitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To determine the effect of periodontitis patients' plasma on the neutrophil oxidative burst and the role of albumin, immunoglobulins (Igs) and cytokines. Materials and Methods: Plasma was collected from chronic periodontitis patients (n=11) and periodontally healthy controls (n=11) and used with/without depletion of albumin and Ig or antibody neutralization of IL-8, GM-CSF or IFN-a to prime/stimulate peripheral blood neutrophils, isolated from healthy volunteers. The respiratory burst was measured by lucigenin-dependent chemiluminescence. Plasma cytokine levels were determined by ELISA. Results: Plasmas from patients were significantly more effective in both directly stimulating neutrophil superoxide production and priming for subsequent formyl-met-leu-phe (fMLP)-stimulated superoxide production than plasmas from healthy controls (p<0.05). This difference was maintained after depletion of albumin and Ig. Plasma from patients contained higher mean levels of IL-8, GM-CSF and IFN-a. Individual neutralizing antibodies against IL-8, GM-CSF or IFN-a inhibited the direct stimulatory effect of patients' plasma, whereas the ability to prime for fMLP-stimulated superoxide production was only inhibited by neutralization of IFN-a. The stimulating and priming effects of control plasma were unaffected by antibody neutralization. Conclusions: This study demonstrates that plasma cytokines may have a role in inducing the hyperactive (IL-8, GM-CSF, IFN-a) and hyper-reactive (IFN-a) neutrophil phenotype seen in periodontitis patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p <0.01.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In non-invasive ventilation, continuous monitoring of respiratory volumes is essential. Here, we present a method for the measurement of respiratory volumes by a single fiber-grating sensor of bending and provide the proof-of-principle by applying a calibration-test measurement procedure on a set of 18 healthy volunteers. Results establish a linear correlation between a change in lung volume and the corresponding change in a local thorax curvature. They also show good sensor accuracy in measurements of tidal and minute respiratory volumes for different types of breathing. The proposed technique does not rely on the air flow through an oronasal mask or the observation of chest movement by a clinician, which distinguishes it from the current clinical practice. © 2014 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory-volume monitoring is an indispensable part of mechanical ventilation. Here we present a new method of the respiratory-volume measurement based on a single fibre-optical long-period sensor of bending and the correlation between torso curvature and lung volume. Unlike the commonly used air-flow based measurement methods the proposed sensor is drift-free and immune to air-leaks. In the paper, we explain the working principle of sensors, a two-step calibration-test measurement procedure and present results that establish a linear correlation between the change in the local thorax curvature and the change of the lung volume. We also discuss the advantages and limitations of these sensors with respect to the current standards. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*. encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Δ strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a nonethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Δ strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain. Copyright © 2005, American Society for Microbiology. All Rights Reserved.