975 resultados para REVERSIBLE ADP-RIBOSYLATION
Mitochondria-Targeting Iron(III) Catecholates for Photoactivated Anticancer Activity under Red Light
Resumo:
Iron(III) catecholates Fe(R-bpa)(R-dopa)Cl] (1, 2) with a triphenylphosphonium (TPP) moiety, where R-bpa is 2-(TPP-N,N-bis((pyridin-2-yl)methyl)ethanamine) chloride (TPPbpa) and R-dopa is 4-{2-(anthracen-9-yl)methylamino]ethyl}benzene-1,2-diol (andopa, 1) or 4-{2-(pyren-1-yl)-methylamino]ethyl}benzene-1,2-diol (pydopa, 2), were synthesized and their photocytotoxicity studied. Complexes 3 and 4 with phenyl-N,N-bis(pyridin-2-yl)methyl]methanamine (phbpa) were used as controls. The catecholate complexes showed an absorption band near 720 nm. The 5e(-) paramagnetic complexes showed a Fe-III/Fe-II irreversible response near -0.45 V and a quasi-reversible catechol/semiquinone couple near 0.5 V versus saturated calomel electrode (SCE) in DMF/0.1 M tetrabutylammonium perchlorate. They showed photocytotoxicity in red/visible light in HeLa, HaCaT, MCF-7, and A549 cells. Complexes 1 and 2 displayed mitochondrial localization, reactive oxygen species (ROS) generation under red light, and apoptotic cell death. Control complexes 3 and 4 exhibited uniform distribution throughout the cell. The complexes showed DNA photocleavage under red light (785 nm), forming hydroxyl radicals as the ROS.
Resumo:
Exploring future cathode materials for sodium-ion batteries, alluaudite class of Na2Fe2II(SO4)(3) has been recently unveiled as a 3.8 V positive insertion candidate (Barpanda et al. Nat. Commun. 2014, 5, 4358). It forms an Fe-based polyanionic compound delivering the highest Fe-redox potential along with excellent rate kinetics and reversibility. However, like all known SO4-based insertion materials, its synthesis is cumbersome that warrants careful processing avoiding any aqueous exposure. Here, an alternate low temperature ionothermal synthesis has been described to produce the alluaudite Na2+2xFe2-xII(SO4)(3). It marks the first demonstration of solvothermal synthesis of alluaudite Na2+2xM2-xII(SO4)(3) (M = 3d metals) family of cathodes. Unlike classical solid-state route, this solvothermal route favors sustainable synthesis of homogeneous nanostructured alluaudite products at only 300 degrees C, the lowest temperature value until date. The current work reports the synthetic aspects of pristine and modified ionothermal synthesis of Na2+2xFe2-xII(SO4)(3) having tunable size (300 nm similar to 5 mu m) and morphology. It shows antiferromagnetic ordering below 12 K. A reversible capacity in excess of 80 mAh/g was obtained with good rate kinetics and cycling stability over 50 cycles. Using a synergistic approach combining experimental and ab initio DFT analysis, the structural, magnetic, electronic, and electrochemical properties and the structural limitation to extract full capacity have been described.
Resumo:
Controlled variation of the electronic properties of. two-dimensional (2D) materials by applying strain has emerged as a promising way to design materials for customized applications. Using density functional theory (DFT) calculations, we show that while the electronic structure and indirect band gap of SnS2 do not change significantly with the number of layers, they can be reversibly tuned by applying biaxial tensile (BT), biaxial compressive (BC), and normal compressive (NC) strains. Mono to multilayered SnS2 exhibit a reversible semiconductor to metal (S-M) transition with applied strain. For bilayer (2L) SnS2, the S-Mtransition occurs at the strain values of 17%,-26%, and -24% under BT, BC, and NC strains, respectively. Due to weaker interlayer coupling, the critical strain value required to achieve the S-Mtransition in SnS2 under NC strain is much higher than for MoS2. From a stability viewpoint, SnS2 becomes unstable at very low strain values on applying BC (-6.5%) and BT strains (4.9%), while it is stable even up to the transition point (-24%) in the case of NC strain. In addition to the reversible tuning of the electronic properties of SnS2, we also show tunability in the phononic band gap of SnS2, which increases with applied NC strain. This gap increases three times faster than for MoS2. This simultaneous tunability of SnS2 at the electronic and phononic levels with strain, makes it a potential candidate in field effect transistors (FETs) and sensors as well as frequency filter applications.
Resumo:
In this paper, a hybrid device based on a microcantilever interfaced with bacteriorhodopsin (bR) is constructed. The microcantilever, on which the highly oriented bR film is self-assembled, undergoes controllable and reversible bending when the light-driven proton pump protein, bR, on the microcantilever surface is activated by visible light. Several control experiments are carried out to preclude the influence of heat and photothermal effects. It is shown that the nanomechanical motion is induced by the resulting gradient of protons, which are transported from the KCl solution on the cytoplasmic side of the bR film towards the extracellular side of the bR film. Along with a simple physical interpretation, the microfabricated cantilever interfaced with the organized molecular film of bR can simulate the natural machinery in converting solar energy to mechanical energy.
Resumo:
Dimensional and finite element analyses were used to analyze the relationship between the mechanical properties and instrumented indentation response of materials. Results revealed the existence of a functional dependence of (engineering yield strength sigma(E,y) + engineering tensile strength sigma(E,b))/Oliver & Pharr hardness on the ratio of reversible elastic work to total work obtained from an indentation test. The relationship links up the Oliver & Pharr hardness with the material strengths, although the Oliver & Pharr hardness may deviate from the true hardness when sinking in or piling up occurs. The functional relationship can further be used to estimate the SUM sigma(E,y) + sigma(E,b) according to the data of an instrumented indentation test. The sigma(E,y) + sigma(E,b) value better reflects the strength of a material compared to the hardness value alone. The method was shown to be effective when applied to aluminum alloys. The relationship can further be used to estimate the fatigue limits, which are usually obtained from macroscopic fatigue tests in different modes.
Resumo:
Cylindrical cellular detonation is numerically investigated by solving two-dimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh. The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction. Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas. Split of cellular structures shows different features in the near-field and far-field from the initiation zone. Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation. Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.
Resumo:
A generalized plane strain JKR model is established for non-slipping adhesive contact between an elastic transversely isotropic cylinder and a dissimilar elastic transversely isotropic half plane, in which a pulling force acts on the cylinder with the pulling direction at an angle inclined to the contact interface. Full-coupled solutions are obtained through the Griffith energy balance between elastic and surface energies. The analysis shows that, for a special case, i.e., the direction of pulling normal to the contact interface, the full-coupled solution can be approximated by a non-oscillatory one, in which the critical pull-off force, pull-off contact half-width and adhesion strength can be expressed explicitly. For the other cases, i.e., the direction of pulling inclined to the contact interface, tangential tractions have significant effects on the pull-off process, it should be described by an exact full-coupled solution. The elastic anisotropy leads to an orientation-dependent pull-off force and adhesion strength. This study could not only supply an exact solution to the generalized JKR model of transversely isotropic materials, but also suggest a reversible adhesion sensor designed by transversely isotropic materials, such as PZT or fiber-reinforced materials with parallel fibers. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
El estudio fue realizado en la Comunidad Tomabú del Municipio de La Trinidad Estelí en el período 2002-2006. En el estudio se definió una muestra propositiva y de carácter opinático, Abarcó a productores que cumplieran los siguientes criterios: área entre 0.5 a menos, hasta 10 Mz 1 , de 10.01 hasta 50 Mz y de 50.01 hasta 100 Mz. Otro criterio empleado en la muestra razonada es que fuesen productores que hayan sido atendidos por instituciones, productores que cultiven granos básicos y hortalizas y que hayan recibido capacitación y asistencia técnica en obras de conservación de suelos y agua. Considerando esos criterios, hace un total de 28 productores correspondiente al 48.3% de los hogares existentes en la comunidad. El estudio se centró en cuatro variables que son: Capacitación y Asistencia técnica, Tenencia de la tierra, Ingresos familiares y Organización. Para ello se hizo una revisión bibliográfica, se aplicaron entrevistas, talleres participativos y observación. Los resultados muestran que El nivel de escolaridadfue uno de los factores que influyó en el nivel de adopción, ya que se encontró que los mayores niveles de adopción los presentan productores con mayores niveles de escolaridad (46% primaria, 28% secundaria, 9% estudios universitarios). Los productores que no saben leer ni escribir adoptaron al menos una de las TCSyA. Entre los principales incentivos otorgados por el Instituto Nicaragüense de Tecnología Agropecuaria (INTA), La Unión Nacional de Agricultores y Ganaderos (UNAG), la Fundación para la Investigación y el Desarrollo Rural (FIDER) y la Asociación para el Desarrollo de los Pueblos (ADP) fueron; alimentos, viáticos, créditos y semillas, los cuales que contribuyeron en gran parte a que los productores adoptaran las Tecnologías de Conservación de Suelos (TCSyA). De la Capacitación y Asistencia técnica los productores entrevistados fueron capacitados en curvas a nivel y la mayoría de ellos (93%) adoptó esta tecnología, el 79% de los capacitados en barreras muertas adoptó el 50%, el 75% de los capacitados en barreras vivas adoptó un 43%, en diques del 68% solo un 4%, en acequias del 54% solo un 7%, siendo estas las cinco TCSyA en las cuales lo productores han sido capacitados con mayor frecuencia. Cuando las tierras son alquiladas disminuye la probabilidad de adoptar, los resultados muestran que la mayor cantidad de TCSyA fueron adoptadas por los productores que disponen de tierras propias (99%), en comparación a los que alquilan tierra. El ingresos total del hogar conformado por ingresos productivos e ingresos extra agrícolas (remesas familiares) tuvo un comportamiento diferente, los Ingresos Económicosno son un factor influyente en la adopción pues tanto los productores que tuvieron balances anuales altos, bajos y hasta negativos, llegaron a adoptar desde una hasta más de 10 técnicas. Aquellos productores que adoptaron mayor cantidad de TCSyA obtuvieron mayores ingresos productivos que los que complementaban con remesas familiares. En lo que respecta al componente Organización los productores organizados presentaron un mayor grado de adopción, pues hubo productores que llegaron a adoptar hasta 16 de las técnicas transferidas en relación a ocho diferentes técnicas adoptadas de los que no están organizados. Finalmente, las variables en estudio, a excepción de los Ingresos Económicos, determinan los niveles de adopción en la zona de estudio. Se requiere por tanto que todo proyecto de desarrollo rural considere estos factores para lograr éxito en su gestión y contribuir eficientemente en la mejora de las condiciones de producción en los sistemas productivos en donde se tiene inferencia.
Resumo:
A semi-gas kinetics (SGK) model for performance analyses of flowing chemical oxygen-iodine laser (COIL) is presented. In this model, the oxygen-iodine reaction gas flow is treated as a continuous medium, and the effect of thermal motions of particles of different laser energy levels on the performances of the COIL is included and the velocity distribution function equations are solved by using the double-parameter perturbational method. For a premixed flow, effects of different chemical reaction systems, different gain saturation models and temperature, pressure, yield of excited oxygen, iodine concentration and frequency-shift on the performances of the COIL are computed, and the calculated output power agrees well with the experimental data. The results indicate that the power extraction of the SGK model considering 21 reactions is close to those when only the reversible pumping reaction is considered, while different gain saturation models and adjustable parameters greatly affect the output power, the optimal threshold gain range, and the length of power extraction.
Resumo:
This paper reviews conflicting results on relativistic transformation formula for tem-perature obtained by different authors in the last half century, discusses the proper expres-sion for elementary work done under reversible processes, and presents a correct derivationof the transformation formula, rather similar in spirit to that of Einstein. It is pointed outthat the point of view adopted by Eddington, Ott, Mφller and Landsberg are erroneous,and that by correctly carrying out detailed analysis for Mφller's working model, which wasoriginally proposed to disprove Planck-Einstein result, we have arrived instead at a result incomplete agreement with that of Planck-Einstein. Thercupon this long standing controversyover the temperature transformation dilemma for relativistic thermodynamics is clarified.
Resumo:
Background: In the violaxanthin (V) cycle, V is de-epoxidized to zeaxanthin (Z) when strong light or light combined with other stressors lead to an overexcitation of photosystems. However, plants can also suffer stress in darkness and recent reports have shown that dehydration triggers V-de-epoxidation in the absence of light. In this study, we used the highly stress-tolerant brown alga Pelvetia canaliculata as a model organism, due to its lack of lutein and its non-photochemical quenching independent of the transthylakoidal-ΔpH, to study the triggering of the V-cycle in darkness induced by abiotic stressors. Results: We have shown that besides desiccation, other factors such as immersion, anoxia and high temperature also induced V-de-epoxidation in darkness. This process was reversible once the treatments had ceased (with the exception of heat, which caused lethal damage). Irrespective of the stressor applied, the resulting de-epoxidised xanthophylls correlated with a decrease in Fv/Fm, suggesting a common function in the down-regulation of photosynthetical efficiency. The implication of the redox-state of the plastoquinone-pool and of the differential activity of V-cycle enzymes on V-de-epoxidation in darkness was also examined. Current results suggest that both violaxanthin de-epoxidase (VDE) and zeaxanthin-epoxidase (ZE) have a basal constitutive activity even in darkness, being ZE inhibited under stress. This inhibition leads to Z accumulation. Conclusion: This study demonstrates that V-cycle activity is triggered by several abiotic stressors even when they occur in an absolute absence of light, leading to a decrease in Fv/Fm. This finding provides new insights into an understanding of the regulation mechanism of the V-cycle and of its ecophysiological roles.
Resumo:
12 p.
Resumo:
15 p.
Resumo:
"Click" chemistry has become an efficient avenue to unimolecular polymeric nanoparticles through the self-crosslinking of individual polymer chains containing appropriate functional groups. Herein we report the synthesis of ultra-small (7 nm in size) polymethyl methacrylate (PMMA) nanoparticles (NPs) by the "metal-free" cross-linking of PMMA-precursor chains prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization containing beta-ketoester functional groups. Intramolecular collapse was performed by the one-pot reaction of beta-ketoester moieties with alkyl diamines in tetrahydrofurane at r.t. (i.e., by enamine formation). The collapsing process was followed by size exclusion chromatography and by nuclear magnetic resonance spectroscopy. The size of the resulting PMMA-NPs was determined by dynamic light scattering. Enamine "click" chemistry increases the synthetic toolbox for the efficient synthesis of metal-free, ultra-small polymeric NPs.
Resumo:
9 p.