978 resultados para RANGE ORDER
Resumo:
Conventionally the problem of the best path in a network refers to the shortest path problem. However, for the vast majority of networks present nowadays this solution has some limitations which directly affect their proper functioning, as well as an inefficient use of their potentialities. Problems at the level of large networks where graphs of high complexity are commonly present as well as the appearing of new services and their respective requirements, are intrinsically related to the inability of this solution. In order to overcome the needs present in these networks, a new approach to the problem of the best path must be explored. One solution that has aroused more interest in the scientific community considers the use of multiple paths between two network nodes, where they can all now be considered as the best path between those nodes. Therefore, the routing will be discontinued only by minimizing one metric, where only one path between nodes is chosen, and shall be made by the selection of one of many paths, thereby allowing the use of a greater diversity of the present paths (obviously, if the network consents). The establishment of multi-path routing in a given network has several advantages for its operation. Its use may well improve the distribution of network traffic, improve recovery time to failure, or it can still offer a greater control of the network by its administrator. These factors still have greater relevance when networks have large dimensions, as well as when their constitution is of high complexity, such as the Internet, where multiple networks managed by different entities are interconnected. A large part of the growing need to use multipath protocols is associated to the routing made based on policies. Therefore, paths with different characteristics can be considered with equal level of preference, and thus be part of the solution for the best way problem. To perform multi-path routing using protocols based only on the destination address has some limitations but it is possible. Concepts of graph theory of algebraic structures can be used to describe how the routes are calculated and classified, enabling to model the routing problem. This thesis studies and analyzes multi-path routing protocols from the known literature and derives a new algebraic condition which allows the correct operation of these protocols without any network restriction. It also develops a range of software tools that allows the planning and the respective verification/validation of new protocols models according to the study made.
Resumo:
ABSTRACT Background Mental health promotion is supported by a strong body of knowledge and is a matter of public health with the potential of a large impact on society. Mental health promotion programs should be implemented as soon as possible in life, preferably starting during pregnancy. Programs should focus on malleable determinants, introducing strategies to reduce risk factors or their impact on mother and child, and also on strengthening protective factors to increase resilience. The ambition of early detecting risk situations requires the development and use of tools to assess risk, and the creation of a responsive network of services based in primary health care, especially maternal consultation during pregnancy and the first months of the born child. The number of risk factors and the way they interact and are buffered by protective factors are relevant for the final impact. Maternal-fetal attachment (MFA) is not yet a totally understood and well operationalized concept. Methodological problems limit the comparison of data as many studies used small size samples, had an exploratory character or used different selection criteria and different measures. There is still a lack of studies in high risk populations evaluating the consequences of a weak MFA. Instead, the available studies are not very conclusive, but suggest that social support, anxiety and depression, self-esteem and self-control and sense of coherence are correlated with MFA. MFA is also correlated with health practices during pregnancy, that influence pregnancy and baby outcomes. MFA seems a relevant concept for the future mother baby interaction, but more studies are needed to clarify the concept and its operationalization. Attachment is a strong scientific concept with multiple implications for future child development, personality and relationship with others. Secure attachment is considered an essential basis of good mental health, and promoting mother-baby interaction offers an excellent opportunity to intervention programmes targeted at enhancing mental health and well-being. Understanding the process of attachment and intervening to improve attachment requires a comprehension of more proximal factors, but also a broader approach that assesses the impact of more distal social conditions on attachment and how this social impact is mediated by family functioning and mother-baby interaction. Finally, it is essential to understand how this knowledge could be translated in effective mental health promoting interventions and measures that could reach large populations of pregnant mothers and families. Strengthening emotional availability (EA) seems to be a relevant approach to improve the mother-baby relationship. In this review we have offered evidence suggesting a range of determinants of mother-infant relationship, including age, marital relationship, social disadvantages, migration, parental psychiatric disorders and the situations of abuse or neglect. Based on this theoretical background we constructed a theoretical model that included proximal and distal factors, risk and protective factors, including variables related to the mother, the father, their social support and mother baby interaction from early pregnancy until six months after birth. We selected the Antenatal Psychosocial Health Assessment (ALPHA) for use as an instrument to detect psychosocial risk during pregnancy. Method Ninety two pregnant women were recruited from the Maternal Health Consultation in Primary Health Care (PHC) at Amadora. They had three moments of assessment: at T1 (until 12 weeks of pregnancy) they filed out a questionnaire that included socio-demographic data, ALPHA, Edinburgh post-natal Depression Scale (EDPS), General Health Questionnaire (GHQ) and Sense of Coherence (SOC); at T2 (after the 20th weeks of pregnancy) they answered EDPS, SOC and MFA Scale (MFAS), and finally at T3 (6 months after birth), they repeated EDPS and SOC, and their interaction with their babies was videotaped and later evaluated using EA Scales. A statistical analysis has been done using descriptive statistics, correlation analysis, univariate logistic regression and multiple linear regression. Results The study has increased our knowledge on this particular population living in a multicultural, suburb community. It allow us to identify specific groups with a higher level of psychosocial risk, such as single or divorced women, young couples, mothers with a low level of education and those who are depressed or have a low SOC. The hypothesis that psychosocial risk is directly correlated with MFAS and that MFA is directly correlated with EA was not confirmed, neither the correlation between prenatal psychosocial risk and mother-baby EA. The study identified depression as a relevant risk factor in pregnancy and its higher prevalence in single or divorced women, immigrants and in those who have a higher global psychosocial risk. Depressed women have a poor MFA, and a lower structuring capacity and a higher hostility to their babies. In average, depression seems to reduce among pregnant women in the second part of their pregnancy. The children of immigrant mothers show a lower level of responsiveness to their mothers what could be transmitted through depression, as immigrant mothers have a higher risk of depression in the beginning of pregnancy and six months after birth. Young mothers have a low MFA and are more intrusive. Women who have a higher level of education are more sensitive and their babies showed to be more responsive. Women who are or have been submitted to abuse were found to have a higher level of MFA but their babies are less responsive to them. The study highlights the relevance of SOC as a potential protective factor while it is strongly and negatively related with a wide range of risk factors and mental health outcomes especially depression before, during and after pregnancy. Conclusions ALPHA proved to be a valid, feasible and reliable instrument to Primary Health Care (PHC) that can be used as a total sum score. We could not prove the association between psychosocial risk factors and MFA, neither between MFA and EA, or between psychosocial risk and EA. Depression and SOC seems to have a clear and opposite relevance on this process. Pregnancy can be considered as a maturational process and an opportunity to change, where adaptation processes occur, buffering risk, decreasing depression and increasing SOC. Further research is necessary to better understand interactions between variables and also to clarify a better operationalization of MFA. We recommend the use of ALPHA, SOC and EDPS in early pregnancy as a way of identifying more vulnerable women that will require additional interventions and support in order to decrease risk. At political level we recommend the reinforcement of Immigrant integration and the increment of education in women. We recommend more focus in health care and public health in mental health condition and psychosocial risk of specific groups at high risk. In PHC special attention should be paid to pregnant women who are single or divorced, very young, low educated and to immigrant mothers. This study provides the basis for an intervention programme for this population, that aims to reduce broad spectrum risk factors and to promote Mental Health in women who become pregnant. Health and mental health policies should facilitate the implementation of the suggested measures.
Resumo:
Nanotechnology plays a central role in ‘tailoring’ materials’ properties and thus improving its performances for a wide range of applications. Coupling nature nano-objects with nanotechnology results in materials with enhanced functionalities. The main objective of this master thesis was the synthesis of nanocrystalline cellulose (NCCs) and its further incorporation in a cellulosic matrix, in order to produce a stimuli-responsive material to moisture. The induced behaviour (bending/unbending) of the samples was deeply investigated, in order to determine relationships between structure/properties. Using microcrystalline cellulose as a starting material, acid hydrolysis was performed and the NCC was obtained. Anisotropic aqueous solutions of HPC and NCC were prepared and films with thicknesses ranging from 22μm to 61μm were achieved, by using a shear casting technique. Microscopic and spectroscopic techniques as well as mechanical and rheological essays were used to characterize the transparent and flexible films produced. Upon the application of a stimulus (moisture), the bending/unbending response times were measured. The use of NCC allowed obtaining films with response times in the order of 6 seconds for the bending and 5 seconds for the unbending, improving the results previously reported. These promising results open new horizons for building up improved soft steam engines.
Resumo:
In the recent past, hardly anyone could predict this course of GIS development. GIS is moving from desktop to cloud. Web 2.0 enabled people to input data into web. These data are becoming increasingly geolocated. Big amounts of data formed something that is called "Big Data". Scientists still don't know how to deal with it completely. Different Data Mining tools are used for trying to extract some useful information from this Big Data. In our study, we also deal with one part of these data - User Generated Geographic Content (UGGC). The Panoramio initiative allows people to upload photos and describe them with tags. These photos are geolocated, which means that they have exact location on the Earth's surface according to a certain spatial reference system. By using Data Mining tools, we are trying to answer if it is possible to extract land use information from Panoramio photo tags. Also, we tried to answer to what extent this information could be accurate. At the end, we compared different Data Mining methods in order to distinguish which one has the most suited performances for this kind of data, which is text. Our answers are quite encouraging. With more than 70% of accuracy, we proved that extracting land use information is possible to some extent. Also, we found Memory Based Reasoning (MBR) method the most suitable method for this kind of data in all cases.
Resumo:
A thermal Energy Storage Unit (ESU) could be used to attenuate inherent temperature fluctuations of a cold finger, either from a cryocooler working or due to sudden income heat bursts. An ESU directly coupled to the cold source acts as a thermal buffer temporarily increasing its cooling capacity and providing a better thermal stability of the cold finger (“Power Booster mode”). The energy storage units presented here use an enthalpy reservoir based on the high latent heat of the liquid-vapour transition of neon in the temperature range 38 - 44 K to store up to 900 J, and that uses a 6 liters expansion volume at RT in order to work as a closed system. Experimental results in the power booster mode will be described: in this case, the liquid neon cell was directly coupled to the cold finger of the working cryocooler, its volume (12 cm3) allowing it to store 450 J at around 40 K. 10 W heat bursts were applied, leading to liquid evaporation, with quite reduced temperature changes. The liquid neon reservoir can also work as a temporary cold source to be used after stopping the cryocooler, allowing for a vibration-free environment. In this case the enthalpy reservoir implemented (24 cm3) was linked to the cryocooler cold finger through a gas gap heat switch for thermal coupling/decoupling of the cold finger. We will show that, by controlling the enthalpy reservoir’s pressure, 900 J can be stored at a constant temperature of 40 K as in a triple-point ESU.
Resumo:
Field Lab Entrepreneurial Innovative Ventures
Resumo:
Field Lab of Entrepreneurial Innovative Ventures
Resumo:
The evolution of receiver architectures, built in modern CMOS technologies, allows the design of high efficient receivers. A key block in modern receivers is the oscillator. The main objective of this thesis is to design a very low power and low area 8-Phase Ring Oscillator for biomedical applications (ISM and WMTS bands). Oscillators with multiphase outputs and variable duty cycles are required. In this thesis we are focused in 12.5% and 50% duty-cycles approaches. The proposed circuit uses eight inverters in a ring structure, in order to generate the output duty cycle of 50%. The duty cycle of 1/8 is achieved through the combination of the longer duty cycle signals in pairs, using, for this purpose, NAND gates. Since the general application are not only the wireless communications context, as well as industrial, scientific and medical plans, the 8-Phase Oscillator is simulated to be wideband between 100 MHz and 1 GHz, and be able to operate in the ISM bands (447 MHz-930 MHz) and WMTS (600 MHz). The circuit prototype is designed in UMC 130 nm CMOS technology. The maximum value of current drawn from a DC power source of 1.2 V, at a maximum frequency of 930 MHz achieved, is 17.54 mA. After completion of the oscillator layout studied (occupied area is 165 μm x 83 μm). Measurement results confirm the expected operating range from the simulations, and therefore, that the oscillator fulfil effectively the goals initially proposed in order to be used as Local Oscillator in RF Modern Receivers.
Resumo:
INTRODUCTION: Leptospirosis is a re-emerging zoonotic disease of humans and animals worldwide. The disease is caused by pathogenic species of the genus Leptospira. These organisms are maintained in nature via chronic renal infection of carrier animals, which excrete the organisms in their urine. Humans become infected through direct or indirect exposure to infected animals and their urine or through contact with contaminated water and soil. This study was conducted to investigate Leptospira infections as a re-emerging zoonosis that has been neglected in Egypt. METHODS: Samples from 1,250 animals (270 rats, 168 dogs, 625 cows, 26 buffaloes, 99 sheep, 14 horses, 26 donkeys and 22 camels), 175 human contacts and 45 water sources were collected from different governorates in Egypt. The samples were collected from different body sites and prepared for culture, PCR and the microscopic agglutination test (MAT). RESULTS: The isolation rates of Leptospira serovars were 6.9%, 11.3% and 1.1% for rats, dogs and cows, respectively, whereas the PCR results revealed respective detection rates of 24%, 11.3% and 1.1% for rats, dogs and cows. Neither the other examined animal species nor humans yielded positive results via these two techniques. Only six Leptospira serovars (Icterohaemorrhagiae, Pomona, Canicola, Grippotyphosa, Celledoni and Pyrogenes) could be isolated from rats, dogs and cows. Moreover, the seroprevalence of leptospiral antibodies among the examined humans determined using MAT was 49.7%. CONCLUSIONS: The obtained results revealed that rats, dogs and cows were the most important animal reservoirs for leptospirosis in Egypt, and the high seroprevalence among human contacts highlights the public health implications of this neglected zoonosis.
Resumo:
Cities develop according to different patterns, undergoing population growth during some periods and decline (shrinkage) during others. Theories attempting to understand these behaviours include: 1) shrinkage is a natural process in the life cycle of a city, alternating with periods of growth, or 2) shrinkage is an extreme event that places cities into a continuous decline process with no return to population growth. We use retrospective data over a period of 130 years to study 25 Portuguese cities currently facing population decline, and show that both theories coexist in time and space. Five types of shrinking city are revealed: “Persistent Early Shrinkage” due to exodus fromthe rural periphery, “Metropolitan Shrinkage” due to the challenges of urban sprawl, “Recent Shrinkage” in de-industrialisation hotspots, “Cyclic Shrinkage” occurring in political transformation cores, and “Mild Shrinkage” due to life-style disamenity. As diversity of city population trajectories appears to be the norm in both Portugal and other Western European countries, the incorporation of this range into the management of urban transitions is recommended in order to reinforce city resilience.
Resumo:
Mestrado em Ciências Jurídicas Empresariais
Resumo:
This thesis was focused on the production, extraction and characterization of chitin:β-glucan complex (CGC). In this process, glycerol byproduct from the biodiesel industry was used as carbon source. The selected CGC producing yeast was Komagataella pastoris (formerly known as Pichia pastoris), due the fact that to achieved high cell densities using as carbon source glycerol from the biodiesel industry. Firstly, a screening of K. pastoris strains was performed in shake flask assays, in order to select the strain of K. pastoris with better performance, in terms of growth, using glycerol as a carbon source. K. pastoris strain DSM 70877 achieved higher final cell densities (92-97 g/l), using pure glycerol (99%, w/v) and in glycerol from the biodiesel industry (86%, w/v), respectively, compared to DSM 70382 strain (74-82 g/l). Based on these shake flask assays results, the wild type DSM 70877 strain was selected to proceed for cultivation in a 2 l bioreactor, using glycerol byproduct (40 g/l), as sole carbon source. Biomass production by K. pastoris was performed under controlled temperature and pH (30.0 ºC and 5.0, respectively). More than 100 g/l biomass was obtained in less than 48 h. The yield of biomass on a glycerol basis was 0.55 g/g during the batch phase and 0.63 g/g during the fed-batch phase. In order to optimize the downstream process, by increasing extraction and purification efficiency of CGC from K. pastoris biomass, several assays were performed. It was found that extraction with 5 M NaOH at 65 ºC, during 2 hours, associated to neutralization with HCl, followed by successive washing steps with deionised water until conductivity of ≤20μS/cm, increased CGC purity. The obtained copolymer, CGCpure, had a chitin:glucan molar ratio of 25:75 mol% close to commercial CGC samples extracted from A. niger mycelium, kiOsmetine from Kitozyme (30:70 mol%). CGCpure was characterized by solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and Differential Scanning Calorimetry (DCS), revealing a CGC with higher purity than a CGC commercial (kiOsmetine). In order to optimize CGC production, a set of batch cultivation experiments was performed to evaluate the effect of pH (3.5–6.5) and temperature (20–40 ºC) on the specific cell growth rate, CGC production and polymer composition. Statistical tools (response surface methodology and central composite design) were used. The CGC content in the biomass and the volumetric productivity (rp) were not significantly affected within the tested pH and temperature ranges. In contrast, the effect of pH and temperature on the CGC molar ratio was more pronounced. The highest chitin: β-glucan molar ratio (> 14:86) was obtained for the mid-range pH (4.5-5.8) and temperatures (26–33 ºC). The ability of K. pastoris to synthesize CGC with different molar ratios as a function of pH and temperature is a feature that can be exploited to obtain tailored polymer compositions.(...)
Resumo:
Succinic acid (SA) is a highly versatile building block that is used in a wide range of industrial applications. The biological production of succinic acid has emerged in the last years as an efficient alternative to the chemical production based on fossil fuels. However, in order to fully replace the competing petro-based chemical process from which it has been produced so far, some challenges remain to be surpassed. In particular, one main obstacle would be to reduce its production costs, mostly associated to the use of refined sugars. The present work is focused on the development of a sustainable and cost-e↵ective microbial production process based on cheap and renewable resources, such as agroindustrial wastes. Hence, glycerol and carob pods were identified as promising feedstocks and used as inexpensive carbon sources for the bioproduction of succinic acid by Actinobacillus succinogenes 130Z, one of the best naturally producing strains. Even though glycerol is a highly available carbon source, as by-product of biodiesel production, its consumption by A. succinogenes is impaired due to a redox imbalance during cell growth. However, the use of an external electron acceptor such as dimethylsulfoxide (DMSO) may improve glycerol metabolism and succinic acid production by this strain. As such, DMSO was tested as a co-substrate for glycerol consumption and concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by this biocatalyst. Aiming at obtaining higher succinic acid yield and production rate, batch and fed-batch experiments were performed under controlled cultivation conditions. Batch experiments resulted in a succinic acid yield on glycerol of 0.95 g SA/g GLY and a production rate of 2.13 g/L.h, with residual production of acetic and formic acids. In fed-batch experiment, the SA production rate reached 2.31 g/L.h, the highest value reported in the literature for A. succinogenes using glycerol as carbon source. DMSO dramatically improved the conversion of glycerol by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Carob pods, highly available in Portugal as a residue from the locust bean gum industry, contain a significant amount of fermentable sugars such as sucrose, glucose and fructose and were also used as substrate for succinic acid production. Sugar extraction from raw and roasted carobs was optimized varying solid/water ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Kinetic studies of glucose, fructose and sucrose consumption by A. succinogenes as individual carbon sources till 30 g/L were first determined to assess possible metabolic diferences. Results showed no significant diferences related to sugar consumption and SA production between the diferent sugars. Carob pods water extracts were then used as carbon source during controlled batch cultivations. (...)
Resumo:
Materials engineering focuses on the assembly of materials´ properties to design new products with the best performance. By using sub-micrometer size materials in the production of composites, it is possible to obtain objects with properties that none of their compounds show individually. Once three-dimensional materials can be easily customized to obtain desired properties, much interest has been paid to nanostructured poly-mers in order to build biocompatible devices. Over the past years, the thermosensitive microgels have become more common in the framework of bio-materials with potential applicability in therapy and/or diagnostics. In addition, high aspect ratio biopolymers fibers have been produced using the cost-effective method called electrospinning. Taking advantage of both microgels and electrospun fibers, surfaces with enhanced functionalities can be obtained and, therefore employed in a wide range of applications. This dissertation reports on the confinement of stimuli-responsive microgels through the colloidal electro-spinning process. The process mainly depends on the composition, properties and patterning of the precur-sor materials within the polymer jet. Microgels as well as the electrospun non-woven mats were investigated to correlate the starting materials with the final morphology of the composite fibers. PNIPAAm and PNIPAAm/Chitosan thermosensitive microgels with different compositions were obtained via surfactant free emulsion polymerization (SFEP) and characterized in terms of chemical structure, morphology, thermal sta-bility, swelling properties and thermosensitivity. Finally, the colloidal electrospinning method was carried out from spinning solutions composed of the stable microgel dispersions (up to a concentration of about 35 wt. % microgels) and a polymer solution of PEO/water/ethanol mixture acting as fiber template solution. The confinement of microgels was confirmed by Scanning Electron Microscopy (SEM). The electrospinning process was statistically analysed providing the optimum set of parameters aimed to minimize the fiber diameter, which give rise to electrospun nanofibers of PNIPAAm microgels/PEO with a mean fiber diameter of 63 ± 25 nm.
Resumo:
Modern fully integrated transceivers architectures, require circuits with low area, low cost, low power, and high efficiency. A key block in modern transceivers is the power amplifier, which is deeply studied in this thesis. First, we study the implementation of a classical Class-A amplifier, describing the basic operation of an RF power amplifier, and analysing the influence of the real models of the reactive components in its operation. Secondly, the Class-E amplifier is deeply studied. The different types of implementations are reviewed and theoretical equations are derived and compared with simulations. There were selected four modes of operation for the Class-E amplifier, in order to perform the implementation of the output stage, and the subsequent comparison of results. This led to the selection of the mode with the best trade-off between efficiency and harmonics distortion, lower power consumption and higher output power. The optimal choice was a parallel circuit containing an inductor with a finite value. To complete the implementation of the PA in switching mode, a driver was implemented. The final block (output stage together with the driver) got 20 % total efficiency (PAE) transmitting 8 dBm output power to a 50 W load with a total harmonic distortion (THD) of 3 % and a total consumption of 28 mW. All implementations are designed using standard 130 nm CMOS technology. The operating frequency is 2.4 GHz and it was considered an 1.2 V DC power supply. The proposed circuit is intended to be used in a Bluetooth transmitter, however, it has a wider range of applications.