847 resultados para RANDOM-ENVIRONMENTS
Resumo:
We recently predicted the existence of random primordial magnetic fields (RPMFs) in the form of randomly oriented cells with dipole-like structure with a cell size L(0) and an average magnetic field B(0). Here, we investigate models for primordial magnetic field with a similar web-like structure, and other geometries, differing perhaps in L(0) and B(0). The effect of RPMF on the formation of the first galaxies is investigated. The filtering mass, M(F), is the halo mass below which baryon accretion is severely depressed. We show that these RPMF could influence the formation of galaxies by altering the filtering mass and the baryon gas fraction of a halo, f(g). The effect is particularly strong in small galaxies. We find, for example, for a comoving B(0) = 0.1 mu G, and a reionization epoch that starts at z(s) = 11 and ends at z(e) = 8, for L(0) = 100 pc at z = 12, the f(g) becomes severely depressed for M < 10(7) M(circle dot), whereas for B(0) = 0 the f(g) becomes severely depressed only for much smaller masses, M < 10(5) M(circle dot). We suggest that the observation of M(F) and f(g) at high redshifts can give information on the intensity and structure of primordial magnetic fields.
Resumo:
Influenced by taxonomic position. For example, bufonids are regarded as exhibiting a permeable skin that seems typical for terrestrial anurans. However, this assumption is supported by information on only four bufonid species; therefore, the enormous ecological diversity of the family remains poorly Investigated. To assess whether variation in R(s) within related bufonids correlates with environmental aridity, we measured area-specific rates of EWL of two Brazilian populations of Rhinella granulosa (previously Bufo granulosus), one from the Atlantic Forest and other from the semi-arid Caatinga, and compared both with the forest species R. ornato. Rhinella granulosa from the Atlantic Forest had higher cutaneous resistance than conspecifics from Caatinga and R. ornata. Rhinella ornato presented the lowest cutaneous resistance values. However, Rs were very close to zero In all three populations. We conclude that enhanced Rs is not part of the suite of traits allowing R. granulosa to exploit the Caatinga, and that variation in R(s) within bufonids may relate to traits other than water conservation. Some Information on microhabitat occupation and ventral skin morphology supports the idea that exceptional abilities for detecting and taking up water may be the key factors enhancing the survival of R. granulosa, and possibly other bufonids, in xeric environments.
Resumo:
Habitat use and the processes which determine fish distribution were evaluated at the reef flat and reef crest zones of a tropical, algal-dominated reef. Our comparisons indicated significant differences in the majority of the evaluated environmental characteristics between zones. Also, significant differences in the abundances of twelve, from thirteen analyzed species, were observed within and between-sites. According to null models, non-random patterns of species co-occurrences were significant, suggesting that fish guilds in both zones were non-randomly structured. Unexpectedly, structural complexity negatively affected overall species richness, but had a major positive influence on highly site-attached species such as a damselfish. Depth and substrate composition, particularly macroalgae cover, were positive determinants for the fish assemblage structure in the studied reef, prevailing over factors such as structural complexity and live coral cover. Our results are conflicting with other studies carried out in coral-dominated reefs of the Caribbean and Pacific, therefore supporting the idea that the factors which may potentially influence reef fish composition are highly site-dependent and variable.
Resumo:
The Prospective and Retrospective Memory Questionnaire (PRMQ) has been shown to have acceptable reliability and factorial, predictive, and concurrent validity. However, the PRMQ has never been administered to a probability sample survey representative of all ages in adulthood, nor have previous studies controlled for factors that are known to influence metamemory, such as affective status. Here, the PRMQ was applied in a survey adopting a probabilistic three-stage cluster sample representative of the population of Sao Paulo, Brazil, according to gender, age (20-80 years), and economic status (n=1042). After excluding participants who had conditions that impair memory (depression, anxiety, used psychotropics, and/or had neurological/psychiatric disorders), in the remaining 664 individuals we (a) used confirmatory factor analyses to test competing models of the latent structure of the PRMQ, and (b) studied effects of gender, age, schooling, and economic status on prospective and retrospective memory complaints. The model with the best fit confirmed the same tripartite structure (general memory factor and two orthogonal prospective and retrospective memory factors) previously reported. Women complained more of general memory slips, especially those in the first 5 years after menopause, and there were more complaints of prospective than retrospective memory, except in participants with lower family income.
Resumo:
Reusable and evolvable Software Engineering Environments (SEES) are essential to software production and have increasingly become a need. In another perspective, software architectures and reference architectures have played a significant role in determining the success of software systems. In this paper we present a reference architecture for SEEs, named RefASSET, which is based on concepts coming from the aspect-oriented approach. This architecture is specialized to the software testing domain and the development of tools for that domain is discussed. This and other case studies have pointed out that the use of aspects in RefASSET provides a better Separation of Concerns, resulting in reusable and evolvable SEEs. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Component-based software engineering has recently emerged as a promising solution to the development of system-level software. Unfortunately, current approaches are limited to specific platforms and domains. This lack of generality is particularly problematic as it prevents knowledge sharing and generally drives development costs up. In the past, we have developed a generic approach to component-based software engineering for system-level software called OpenCom. In this paper, we present OpenComL an instantiation of OpenCom to Linux environments and show how it can be profiled to meet a range of system-level software in Linux environments. For this, we demonstrate its application to constructing a programmable router platform and a middleware for parallel environments.
Resumo:
We investigate the eigenvalue statistics of ensembles of normal random matrices when their order N tends to infinite. In the model, the eigenvalues have uniform density within a region determined by a simple analytic polynomial curve. We study the conformal deformations of equilibrium measures of normal random ensembles to the real line and give sufficient conditions for it to weakly converge to a Wigner measure.
Resumo:
The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effects were investigated using both explicit and implicit solvation models. For the explicit description of the solvent, molecular dynamics and Monte Carlo simulations in the isothermal isobaric (NpT) ensemble combined with the free energy perturbation technique were performed to determine solvation free energies. Within the implicit solvation approach, the polarizable continuum model and the conductor-like screening model were applied. Combination of gas phase results with the results obtained from the different solvation models through an appropriate thermodynamic cycle allows estimation of complexation free energies, enthalpies, and the respective entropic contributions in solution. Owing to the strong solvation effects of water the cyclic acetic acid dimer is not stable in aqueous solution. In less polar solvents the double hydrogen bond structure of the acetic acid dimer remains stable. This finding is in agreement with previous theoretical and experimental results. A similar trend as for the acetic acid dimer is also observed for the acetamide complex. The methanol complex was found to be thermodynamically unstable in gas phase as well as in any of the three solvents. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 31: 2046-2055, 2010
Resumo:
In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We consider random generalizations of a quantum model of infinite range introduced by Emch and Radin. The generalizations allow a neat extension from the class l (1) of absolutely summable lattice potentials to the optimal class l (2) of square summable potentials first considered by Khanin and Sinai and generalised by van Enter and van Hemmen. The approach to equilibrium in the case of a Gaussian distribution is proved to be faster than for a Bernoulli distribution for both short-range and long-range lattice potentials. While exponential decay to equilibrium is excluded in the nonrandom l (1) case, it is proved to occur for both short and long range potentials for Gaussian distributions, and for potentials of class l (2) in the Bernoulli case. Open problems are discussed.
Resumo:
We discuss the applicability, within the random matrix theory, of perturbative treatment of symmetry breaking to the experimental data on the flip symmetry breaking in quartz crystal. We found that the values of the parameter that measures this breaking are different for the spacing distribution as compared to those for the spectral rigidity. We consider both two-fold and three-fold symmetries. The latter was found to account better for the spectral rigidity than the former. Both cases, however, underestimate the experimental spectral rigidity at large L. This discrepancy can be resolved if an appropriate number of eigenfrequencies is considered to be missing in the sample. Our findings are relevant for symmetry violation studies in general. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Bose systems, subject to the action of external random potentials, are considered. For describing the system properties, under the action of spatially random potentials of arbitrary strength, the stochastic mean-field approximation is employed. When the strength of disorder increases, the extended Bose-Einstein condensate fragments into spatially disconnected regions, forming a granular condensate. Increasing the strength of disorder even more transforms the granular condensate into the normal glass. The influence of time-dependent external potentials is also discussed. Fastly varying temporal potentials, to some extent, imitate the action of spatially random potentials. In particular, strong time-alternating potential can induce the appearance of a nonequilibrium granular condensate.
Resumo:
Automated virtual camera control has been widely used in animation and interactive virtual environments. We have developed a multiple sparse camera based free view video system prototype that allows users to control the position and orientation of a virtual camera, enabling the observation of a real scene in three dimensions (3D) from any desired viewpoint. Automatic camera control can be activated to follow selected objects by the user. Our method combines a simple geometric model of the scene composed of planes (virtual environment), augmented with visual information from the cameras and pre-computed tracking information of moving targets to generate novel perspective corrected 3D views of the virtual camera and moving objects. To achieve real-time rendering performance, view-dependent textured mapped billboards are used to render the moving objects at their correct locations and foreground masks are used to remove the moving objects from the projected video streams. The current prototype runs on a PC with a common graphics card and can generate virtual 2D views from three cameras of resolution 768 x 576 with several moving objects at about 11 fps. (C)2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we study the accumulated claim in some fixed time period, skipping the classical assumption of mutual independence between the variables involved. Two basic models are considered: Model I assumes that any pair of claims are equally correlated which means that the corresponding square-integrable sequence is exchangeable one. Model 2 states that the correlations between the adjacent claims are the same. Recurrence and explicit expressions for the joint probability generating function are derived and the impact of the dependence parameter (correlation coefficient) in both models is examined. The Markov binomial distribution is obtained as a particular case under assumptions of Model 2. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We study random walks systems on Z whose general description follows. At time zero, there is a number N >= 1 of particles at each vertex of N, all being inactive, except for those placed at the vertex one. Each active particle performs a simple random walk on Z and, up to the time it dies, it activates all inactive particles that it meets along its way. An active particle dies at the instant it reaches a certain fixed total of jumps (L >= 1) without activating any particle, so that its lifetime depends strongly on the past of the process. We investigate how the probability of survival of the process depends on L and on the jumping probabilities of the active particles.