957 resultados para Plastic pipes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-state ion conductors based on organic ionic plastic crystals (OIPCs) are a promising alternative to conventional liquid electrolytes in lithium battery applications. The OIPC-based electrolytes are safe (nonflammable) and flexible in terms of design and operating conditions. Magnetic resonance imaging (MRI) is a powerful noninvasive method enabling visualization of various chemical phenomena. Here, we report a first quantitative in situ MRI study of operating solid-state lithium cells. Lithium ion transfer into the OIPC matrix during the ongoing discharge of the anode results in partial liquefaction of the electrolyte at the metal interface. The developed liquid component enhances the ion transport across the interface and overall battery performance. Displacement of the liquefaction front is accompanied by a faster Li transfer through the grain boundaries and depletion at the cathode. The demonstrated solid-liquid hybrid properties, inherent in many OIPCs, combine benefits of highly conductive ionic liquids with safety and flexibility of solids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulating evidence, from animal models and human observational studies, implicates the in utero (and early postnatal) environment in the 'programming' of risk for a variety of adverse outcomes and health trajectories. The modern environment is replete with man-made compounds such as plastic product chemicals (PPC), including phenols and phthalates. Evidence from several human cohorts implicates exposure to these chemicals in adverse offspring neurodevelopment, though a direct causal relationship has not been firmly established. In this review we consider a potential causal pathway that encompasses epigenetic human variation, and how we might test this mechanistic hypothesis in human studies. In the first part of this report we outline how PPCs induce epigenetic change, focusing on the brain derived neurotrophic factor (BDNF) gene, a key regulator of neurodevelopment. Further, we discuss the role of the epigenetics of BDNF and other genes in neurodevelopment and the emerging human evidence of an association between phthalate exposure and adverse offspring neurodevelopment. We discuss aspects of epidemiological and molecular study design and analysis that could be employed to strengthen the level of human evidence to infer causality. We undertake this using an exemplar recent research example: maternal prenatal smoking, linked to methylation change at the aryl hydrocarbon receptor repressor (AHRR) gene at birth, now shown to mediate some of the effects of maternal smoking on birth weight. Characterizing the relationship between the modern environment and the human molecular pathways underpinning its impact on early development is paramount to understanding the public health significance of modern day chemical exposures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic zones and associated deformations ahead of a fatigue crack are well established nowadays. In-depth plane strain elasto-plastic finite element analysis is conducted in this investigation to understand the nature of cyclic plastic deformation and damage around soft and hard elliptical inclusions. Similar to fatigue crack tip, cyclic/reverse plastic zone and monotonic plastic zone are visible for soft elliptical inclusion. In the cyclic plastic zone, low cycle fatigue is the dominant cyclic deformation mode during symmetric load cycling, while ratcheting is dominant during asymmetric load cycling. The size of cyclic plastic zone depends upon the amplitude of remote stress while, the size of monotonic plastic zone depends upon the maximum remote stress. The size of monotonic plastic zone is equal to cyclic plastic zone during symmetric load cycling. The shape and size of plastic zones also depend upon the orientation of the soft inclusion. Cyclic plastic damage progression in the cyclic plastic zone for soft (MnS) inclusion is significant, while no cyclic plastic zone is visible for hard inclusion (Al2O3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first use of organic ionic plastic crystals (OIPCs) as CO2 separation membranes is reported. The novel OIPC/PVDF nanofiber composites show CO2/N2 ideal selectivities of 30 at 35 °C. The dependence of gas permeability on the thermal phase of the plastic crystals is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this project is to learn the necessary steps to create a finite element model, which can accurately predict the dynamic response of a Kohler Engines Heavy Duty Air Cleaner (HDAC). This air cleaner is composed of three glass reinforced plastic components and two air filters. Several uncertainties arose in the finite element (FE) model due to the HDAC’s component material properties and assembly conditions. To help understand and mitigate these uncertainties, analytical and experimental modal models were created concurrently to perform a model correlation and calibration. Over the course of the project simple and practical methods were found for future FE model creation. Similarly, an experimental method for the optimal acquisition of experimental modal data was arrived upon. After the model correlation and calibration was performed a validation experiment was used to confirm the FE models predictive capabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing patch for strain or temperature sensing. The cyclic strain performance and temperature characteristics of both devices are examined and discussed. The strain sensitivities of the sensing patches were 0.40 and 0.95 pm/μϵ for SOFBG embedded in ABS, 0.38 pm/μμ for POFBG in PLA, and 0.15 pm/μμ for POFBG in ABS. The strain response was linear above a threshold and repeatable. The temperature sensitivity of the SOFBG sensing patch was found to be up to 169 pm/°C, which was up to 17 times higher than for an unembedded silica grating. Unstable temperature response POFBG embedded in PLA was reported, with temperature sensitivity values varying between 30 and 40 pm/°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine plastic pollution is rapidly growing and is a source of major concern. Seabirds often ingest plastic debris and are increasingly used as biological monitors of plastic pollution. However, virtually no studies have assessed plastics in seabirds in the deep subtropical North Atlantic. We investigated whether remains of white-faced storm-petrels (WFSP) present in gull pellets could be used for biomonitoring. We analysed 263 pellets and 79.0% of these contained plastic debris originating in the digestive tract of WFSP. Pellets with no bird prey did not contain plastics. Most debris were fragments (83.6%) with fewer plastic pellets (8.2%). Light-coloured plastics predominated (71.0%) and the most frequent polymer was HDPE (73.0%). Stable isotopes in toe-nails of WFSP containing many versus no plastics did not differ, indicating no individual specialisation leading to differential plastic ingestion. We suggest WFSP in pellets are highly suitable to monitor the little known pelagic subtropical Northeast Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preservation of modern and contemporary art and costume collections in museums requires a complete understanding of their constituent materials which are often synthetic or semi-synthetic polymers. An extraordinary amount of quality information can be gained from instrumental techniques, but some of them have the disadvantage of being destructive. This paper presents a new totally integrated non-invasive methodology, for the identification of polymers and their additives, on plastic artefacts in museums. NMR (nuclear magnetic resonance) and in-situ FTIR-ATR (attenuated total reflection infrared spectroscopy) combination allowed the full characterization of the structure of thesematerials and correct identification of each one. The NMR technique applied to leached surface exudates identified unequivocally a great number of additives, exceeding the Py–GC–MS analysis of micro-fragments in number and efficiency. Additionally, in-situ FTIR-ATR provided exactly the same information of the destructive μ-FTIR about the polymer structure and confirmed the presence of some additives. Eight costume pieces (cosmetic boxes and purses), dating to the beginning of the 20th century and belonging to the Portuguese National Museum of Costume and Fashion, were correctly identified with this new integrated methodology, as beingmade of plastics derived fromcellulose acetate or cellulose nitrate polymers, contradicting the initial information that these pieces were made of Bakelite. The identification of a surprisingly large number of different additives forms an added value of this methodology and opens a perspective of a quick and better characterization of plastic artefacts in museum environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study and preservation of museum collections requires complete knowledge and understanding of constituent materials that can be natural, synthetic, or semi-synthetic polymers. In former times, objects were incorporated in museum collections and classified solely by their appearance. New studies, prompted by severe degradation processes or conservation-restoration actions, help shed light on the materiality of objects that can contradict the original information or assumptions. The selected case study presented here is of a box dating from the beginning of the 20th century that belongs to the Portuguese National Ancient Art Museum. Museum curators classified it as a tortoiseshell box decorated with gold applications solely on the basis of visual inspection and the information provided by the donor. This box has visible signs of degradation with white veils, initially assumed to be the result of biological degradation of a proteinaceous matrix. This paper presents the methodological rationale behind this study and proposes a totally non-invasive methodology for the identification of polymeric materials in museum artifacts. The analysis of surface leachates using 1H and 13C nuclear magnetic resonance (NMR) complemented by in situ attenuated total reflection infrared spectroscopy (ATR FT-IR) allowed for full characterization of the object s substratum. The NMR technique unequivocally identified a great number of additives and ATR FT-IR provided information about the polymer structure and while also confirming the presence of additives. The pressure applied during ATR FT-IR spectroscopy did not cause any physical change in the structure of the material at the level of the surface (e.g., color, texture, brightness, etc.). In this study, variable pressure scanning electron microscopy (VP-SEM-EDS) was also used to obtain the elemental composition of the metallic decorations. Additionally, microbiologic and enzymatic assays were performed in order to identify the possible biofilm composition and understand the role of microorganisms in the biodeterioration process. Using these methodologies, the box was correctly identified as being made of cellulose acetate plastic with brass decorations and the white film was identified as being composed mainly of polymer exudates, namely sulphonamides and triphenyl phosphate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a multiscale model bridging length and time scales from molecular to continuum levels with the objective of predicting the yield behavior of amorphous glassy polyethylene (PE). Constitutive pa- rameters are obtained from molecular dynamics (MD) simulations, decreasing the requirement for ad- hoc experiments. Consequently, we achieve: (1) the identification of multisurface yield functions; (2) the high strain rate involved in MD simulations is upscaled to continuum via quasi-static simulations. Validation demonstrates that the entire multisurface yield functions can be scaled to quasi-static rates where the yield stresses are possibly predicted by a proposed scaling law; (3) a hierarchical multiscale model is constructed to predict temperature and strain rate dependent yield strength of the PE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chinese mitten crab is known as a pest causing damage to fishing gears and fish. On the other hand, this highly invasive species is considered a delicacy by Asian migrants and therefore commercially fished and sold in many countries. The ingestion of plastic by the Chinese mitten crab Eriocheir sinensis from the Baltic coastal waters (Poland) and the Tagus Estuary (Portugal) was studied based on stomach content analysis. As many as 13% of the 302 analysed males and females (38.07–89.07 mm carapace width) from both regions, contained microplastic in the form of strands and balls. Most of them were transparent. Ingested plastic particles were identified as fragments of fishing gears. Contamination with plastic may have a negative impact on this species as well as on higher trophic levels feeding on crabs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In truck manufacturing, the exhaust and air inlet pipes are specialized equipment that requires highly skilled, heavy machinery and small batch production methods. This paper describes a project to develop the computer numerically controlled (CNC) pipe bending process for a truck component manufacturer. The company supplies a huge range of heavy duty truck parts to the domestic market and is a significant supplier in Australia. The company has been using traditional methods of machine assisted manual pipe bending techniques. In a drive of continuous improvement, the company has acquired a pre-owned CNC bending machine capable of bending pipes automatically up to 25 bends. However, due to process mismatch, this machine is only used for single bending operation. The researchers studied the bending system and changed the manufacturing process. Using an example exhaust pipe as the benchmark, a significant drop of manufacturing lead time from 70 minutes to 40 minutes for each pipe was demonstrated. There was also a decrease of material cost due to the multiple bends part in one piece without cutting excessive materials for each single bend like it used to be.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to assess a commercial building for its impact on the environment at the earliest stage of design is a goal which is achievable by integrating several approaches into a single procedure directly from the 3D CAD representation. Such an approach enables building design professionals to make informed decisions on the environmental impact of building and its alternatives during the design development stage instead of at the post-design stage where options become limited. The indicators of interest are those which relate to consumption of resources and energy, contributions to pollution of air, water and soil, and impacts on the health and wellbeing of people in the built environment as a result of constructing and operating buildings. 3D object-oriented CAD files contain a wealth of building information which can be interrogated for details required for analysis of the performance of a design. The quantities of all components in the building can be automatically obtained from the 3D CAD objects and their constituent materials identified to calculate a complete list of the amounts of all building products such as concrete, steel, timber, plastic etc. When this information is combined with a life cycle inventory database, key internationally recognised environmental indicators can be estimated. Such a fully integrated tool known as LCADesign has been created for automated ecoefficiency assessment of commercial buildings direct from 3D CAD. This paper outlines the key features of LCADesign and its application to environmental assessment of commercial buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buildings consume resources and energy, contribute to pollution of our air, water and soil, impact the health and well-being of populations and constitute an important part of the built environment in which we live. The ability to assess their design with a view to reducing that impact automatically from their 3D CAD representations enables building design professionals to make informed decisions on the environmental impact of building structures. Contemporary 3D object-oriented CAD files contain a wealth of building information. LCADesign has been designed as a fully integrated approach for automated eco-efficiency assessment of commercial buildings direct from 3D CAD. LCADesign accesses the 3D CAD detail through Industry Foundation Classes (IFCs) - the international standard file format for defining architectural and constructional CAD graphic data as 3D real-world objects - to permit construction professionals to interrogate these intelligent drawing objects for analysis of the performance of a design. The automated take-off provides quantities of all building components whose specific production processes, logistics and raw material inputs, where necessary, are identified to calculate a complete list of quantities for all products such as concrete, steel, timber, plastic etc and combines this information with the life cycle inventory database, to estimate key internationally recognised environmental indicators such as CML, EPS and Eco-indicator 99. This paper outlines the key modules of LCADesign and their role in delivering an automated eco-efficiency assessment for commercial buildings.