964 resultados para Plasma amino acids


Relevância:

80.00% 80.00%

Publicador:

Resumo:

NMR spectroscopy enables the study of biomolecules from peptides and carbohydrates to proteins at atomic resolution. The technique uniquely allows for structure determination of molecules in solution-state. It also gives insights into dynamics and intermolecular interactions important for determining biological function. Detailed molecular information is entangled in the nuclear spin states. The information can be extracted by pulse sequences designed to measure the desired molecular parameters. Advancement of pulse sequence methodology therefore plays a key role in the development of biomolecular NMR spectroscopy. A range of novel pulse sequences for solution-state NMR spectroscopy are presented in this thesis. The pulse sequences are described in relation to the molecular information they provide. The pulse sequence experiments represent several advances in NMR spectroscopy with particular emphasis on applications for proteins. Some of the novel methods are focusing on methyl-containing amino acids which are pivotal for structure determination. Methyl-specific assignment schemes are introduced for increasing the size range of 13C,15N labeled proteins amenable to structure determination without resolving to more elaborate labeling schemes. Furthermore, cost-effective means are presented for monitoring amide and methyl correlations simultaneously. Residual dipolar couplings can be applied for structure refinement as well as for studying dynamics. Accurate methods for measuring residual dipolar couplings in small proteins are devised along with special techniques applicable when proteins require high pH or high temperature solvent conditions. Finally, a new technique is demonstrated to diminish strong-coupling induced artifacts in HMBC, a routine experiment for establishing long-range correlations in unlabeled molecules. The presented experiments facilitate structural studies of biomolecules by NMR spectroscopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 μg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 μg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three polyester bag experiments were conducted with fistulated Bos indicus steers to determine the effect of the amount and type of nitrogen (N) supplement on the digestion rate of forages different in quality. In Experiment 1, test substrates were incubated in polyester bags in the rumen of steers fed ryegrass, pangola grass, speargrass and Mitchell grass hays in a 4 by 4 Latin-square design. In Experiment 2, test substrates were incubated in polyester bags in the rumen of steers fed speargrass hay supplemented with urea and ammonium sulfate (US), branched-chain amino acids with US (USAA), casein, cottonseed meal, yeast and Chlorella algae in a 7 by 3 incomplete Latin-square design. In Experiment 3, test substrates were incubated in polyester bags in the rumen of steers fed Mitchell grass hay supplemented with increasing amounts of US or Spirulina algae (Spirulina platensis). The test substrates used in all experiments were speargrass, Mitchell grass, pangola grass or ryegrass hays. Digestion rate of the ryegrass substrate was higher than that of the speargrass substrate (P < 0.05) in Experiment 1. Supplementation with various N sources increased the degradation rate and effective degradability of all incubated substrates above that apparent in Control steers (P < 0.05; Experiment 2). Supplementation of US and Spirulina increased degradation rate and effective degradability of ryegrass, pangola grass and Mitchell grass substrates above that apparent in Control steers (P < 0.05; Experiment 3). However, there was no further response on digestion rate of the substrates in increasing supplementation levels either for US or Spirulina. In conclusion, rate of digestion was affected by forage physical and anatomical properties. Supplementation with various N sources increased rate of digestion when the Control forage ration was very low in N but once a minimum level of N supplementation was reached, irrespective of form of N or other potential growth factors, there was no further increase in rate of digestion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 µg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 µg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arginine decarboxylase which makes its appearance in Lathyrus sativus seedlings after 24 h of seed germination reaches its highest level around 5–7 days, the cotyledons containing about 60% of the total activity in the seedlings at day 5. The cytosol enzyme was purified 977-fold from whole seedlings by steps involving manganese chloride treatment, ammonium sulphate and acetone fractionations, positive adsorption on alumina C-γ gel, DEAE-Sephadex chromatography followed by preparative disc gel electrophoresis. The enzyme was shown to be homogeneous by electrophoretic and immunological criteria, had a molecular weight of 220000 and appears to be a hexamer with identical subunits. The optimal pH and temperature for the enzyme activity were 8.5 and 45 °C respectively. The enzyme follows typical Michaelis-Menten kinetics with a Km value of 1.73 mM for arginine. Though Mn2+ at lower concentrations stimulated the enzyme activity, there was no dependence of the enzyme on any metal for the activity. The arginine decarboxylase of L. sativus is a sulfhydryl enzyme. The data on co-factor requirement, inhibition by carbonyl reagents, reducing agents and pyridoxal phosphate inhibitors, and a partial reversal by pyridoxal phosphate of inhibition by pyridoxal · HCl suggests that pyridoxal 5'-phosphate is involved as a co-factor for the enzyme. The enzyme activity was inhibited competitively by various amines including the product agmatine. Highest inhibition was obtained with spermine and arcain. The substrate analogue, l-canavanine, homologue l-homoarginine and other basic amino acids like l-lysine and l-ornithine inhibited the enzyme activity competitively, homoarginine being the most effective in this respect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A cDNA library for 6S–9S poly(A)-containing RNA from rat liver was constructed in Image . Initial screening of the clones was carried out using single stranded 32P-labeled cDNA prepared against poly(A)-containing RNA isolated from immunoadsorbed polyribosomes enriched for the nuclear-coded subunit messenger RNAs of cytochrome c oxidase. One of the clones, pCO89, was found to hybridize with the messenger RNA for subunit VIC. The DNA sequence of the insert in pCO89 was carried out and it has got extensive homology with the C-terminal 33 amino acids of subunit VIC from beef heart cytochrome c oxidase. In addition, the insert contained 146 bp, corresponding to a portion of the 3′-non-coding region. Northern blot analysis of rat liver RNA with the nick-translated insert of pCO89 revealed that the messenger RNA for subunit VI would contain around 510 bases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Direct synthesis of condensed triazoles from diverse sulfamidates by ring opening of sulfamidates with sodium azide followed by one-pot propargylation and cycloaddition furnished title compounds. The methodology in general has been demonstrated on diverse sulfamidates derived from amino acids, amino acid derivatives, and carbohydrates to obtain diverse triazole fused scaffolds. In one example, a condensed triazole containing amino acid has been synthesized by ring opening of a sulfamidate derivative with propargyl amine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many Gram-negative bacteria pathogenic to plants and animals possess type III secretion systems that are used to cause disease. Effector proteins are injected into host cells using the type III secretion machineries. Despite vigorous studies, the nature of the secretion signal for type III secreted proteins still remains elusive. Both mRNA and proteinaceous signals have been proposed. Findings on coupling of translation to secretion by the type III secretion systems are also still contradictory. This study dealt with the secretion signal of HrpA from Pseudomonas syringae pathovar tomato. HrpA is the major component of the type III secretion system-associated Hrp pilus and a substrate for the type III secretion systems. The secretion signal was shown to reside in the first 15 codons or amino acids, a location typical for type III secretion signals. Translation of HrpA in the absence of a functional type III secretion system was established, but it does not exclude the possibility of coupling of translation to secretion when the secretion apparatus is present. The hrpA transcripts from various unrelated plant pathogenic bacteria were shown to be extremely stable. The biological relevance of this observation is unknown, but possible explanations include the high prevalence of HrpA protein, an mRNA secretion signal or timing of secretion. The hrpA mRNAs are stable over a wide range of temperatures, in the absence of translating ribosomes and even in the heterologous host Escherichia coli. The untranslated regions (UTRs) of hrpA transcripts from at least 20 pathovars of Pseudomonas syringae are highly homologous, whilst their coding regions exhibit low similarity. The stable nature of hrpA messenger RNAs is likely to be due to the folding of their 5 and 3 UTRs. In silico the UTRs seem to form stem-loop structures, the hairpin structures in the 3 UTRs being rich in guanidine and cytosine residues. The stable nature of the hrpA transcript redirected the studies to the stabilization of heterologous transcripts and to the use of stable messenger RNAs in recombinant protein production. Fragments of the hrpA transcript can be used to confer stability on heterologous transcripts from several sources of bacterial and eukaryotic origin, and to elevate the levels of production of the corresponding recombinant proteins several folds. hrpA transcript stabilizing elements can be used for improving the yields of recombinant proteins even in Escherichia coli, one of the most commonly used industrial protein production hosts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MUCH information has been gathered in recent years on the so-called 'antifreeze' proteins which lower the freezing point of the serum of certain marine fishes living in sub-zero water temperatures1−4. The proteins from the Antarctic fish Trematomus borchgrevinki are glycoproteins with a repeating alanyl-alanyl-threonyl tripeptide sequence, the threonyl residue being linked to a disaccharide1,2. In contrast, the antifreeze protein from the winter flounder Pseudopleuronectus americanus in the North American Atlantic coastal region is made up of eight ammo acids with no apparent repeating sequence of the residues and no sugar moiety (ref. 4 and unpublished work of C. L. Hew, C. C. Yip & G. Fletcher). The antifreeze activity of these proteins is not compatible with the known colligative properties of solutes in solution and the mechanism of their action is not yet fully understood. But a common feature of both types of the antifreeze proteins is the preponderance of alanine which accounts for over 60% of the total amino residues. This fact, together with the absence of the carbohydrate in the protein from the winter flounder, prompted us to attempt the synthesis of polypeptide analogues having comparable proportions of alanine in them along with suitable other amino acids. As a first step, we made use of the lack of any obvious periodicity in the distribution of the alanyl residues in the flounder's protein and attempted the synthesis of a random copolypeptide containing about 65 mol % of alanine and 35 mol % of aspartic acid. The choice of aspartic acid was made on the basis of its being the next major amino acid in the flounder's protein3,4 and on the expectation that its polar character will help the water-solubility of the alanine-rich copolypeptide, as in other studies on alanine-containing random copolymers. In addition, Duman and DeVries4 have earlier indicated the involvement of carboxyl groups on the antifreeze activity by chemical modification studies. We report here the synthesis of this polypeptide and show that it possesses antifreeze activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Receptor guanylyl cyclases are multidomain proteins, and ligand binding to the extracellular domain increases the levels of intracellular cGMP. The intracellular domain of these receptors is composed of a kinase homology domain (KHD), a linker of similar to 70 amino acids, followed by the C-terminal guanylyl cyclase domain. Mechanisms by which these receptors are allosterically regulated by ligand binding to the extracellular domain and ATP binding to the KHD are not completely understood. Here we examine the role of the linker region in receptor guanylyl cyclases by a series of point mutations in receptor guanylyl cyclase C. The linker region is predicted to adopt a coiled coil structure and aid in dimerization, but we find that the effects of mutations neither follow a pattern predicted for a coiled coil peptide nor abrogate dimerization. Importantly, this region is critical for repressing the guanylyl cyclase activity of the receptor in the absence of ligand and permitting ligand-mediated activation of the cyclase domain. Mutant receptors with high basal guanylyl cyclase activity show no further activation in the presence of non-ionic detergents, suggesting that hydrophobic interactions in the basal and inactive conformation of the guanylyl cyclase domain are disrupted by mutation. Equivalent mutations in the linker region of guanylyl cyclase A also elevated the basal activity and abolished ligand-and detergent-mediated activation. We, therefore, have defined a key regulatory role for the linker region of receptor guanylyl cyclases which serves as a transducer of information from the extracellular domain via the KHD to the catalytic domain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adsorption of proteins at the interface between two immiscible electrolyte solutions has been found to be key to their bioelectroactivity at such interfaces. Combined with interfacial complexation of organic phase anions by cationic proteins, this adsorption process may be exploited to achieve nanomolar protein detection. In this study, replica exchange molecular dynamics simulations have been performed to elucidate for the first time the molecular mechanism of adsorption and subsequent unfolding of hen egg white lysozyme at low pH at a polarized 1,2-dichloroethane/water interface. The unfolding of lysozyme was observed to occur as soon as it reaches the organic−aqueous interface,which resulted in a number of distinct orientations at the interface. In all cases, lysozyme interacted with the organic phase through regions rich in nonpolar amino acids, such that the side chains are directed toward the organic phase, whereas charged and polar residues were oriented toward the aqueous phase. By contrast, as expected, lysozyme in neat water at low pH does not exhibit significant structural changes. These findings demonstrate the key influence of the organic phase upon adsorption of lysozyme under the influence of an electric field, which results in the unfolding of its structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The past several years have seen significant advances in the development of computational methods for the prediction of the structure and interactions of coiled-coil peptides. These methods are generally based on pairwise correlations of amino acids, helical propensity, thermal melts and the energetics of sidechain interactions, as well as statistical patterns based on Hidden Markov Model (HMM) and Support Vector Machine (SVM) techniques. These methods are complemented by a number of public databases that contain sequences, motifs, domains and other details of coiled-coil structures identified by various algorithms. Some of these computational methods have been developed to make predictions of coiled-coil structure on the basis of sequence information; however, structural predictions of the oligomerisation state of these peptides still remains largely an open question due to the dynamic behaviour of these molecules. This review focuses on existing in silico methods for the prediction of coiled-coil peptides of functional importance using sequence and/or three-dimensional structural data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The folding and stability of maltose binding protein (MBP) have been investigated as a function of pH and temperature by intrinsic tryptophan fluorescence, far- and near-UV circular dichroism, and high-sensitivity differential scanning calorimetric measurements. MBP is a monomeric, two-domain protein containing 370 amino acids. The protein is stable in the pH range of 4-10.5 at 25 degrees C. The protein exhibits reversible, two-state, thermal and guanidine hydrochloride-mediated denaturation at neutral pH. The thermostability of MBP is maximal at pH 6, with a Tm of 64.9 degrees C and a deltaHm of 259.7 kcal mol(-1). The linear dependence of deltaHm on Tm was used to estimate a value of deltaCp of 7.9 kcal mol(-1) K(-1) or 21.3 cal (mol of residue)(-1) K(-1). These values are higher than the corresponding deltaCp's for most globular proteins studied to date. However, the extrapolated values of deltaH and deltaS (per mole of residue) at 110 degrees C are similar to those of other globular proteins. These data have been used to show that the temperature at which a protein undergoes cold denaturation depends primarily on the deltaCp (per mol of residue) and that this temperature increases with an increase in deltaCp. The predicted decrease in stability of MBP at low temperatures was experimentally confirmed by carrying out denaturant-mediated unfolding studies at neutral pH at 2 and 28 degrees C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The incidence of human infections by the fungal pathogen Candida species has been increasing in recent years. Enolase is an essential protein in fungal metabolism. Sequence data is available for human and a number of medically important fungal species. An understanding of the structural and functional features of fungal enolases may provide the structural basis for their use as a target for the development of new anti-fungal drugs. We have obtained the sequence of the enolase of Candida krusei (C. krusei), as it is a significant medically important fungal pathogen. We have then used multiple sequence alignments with various enolase isoforms in order to identify C. krusei specific amino acid residues. The phylogenetic tree of enolases shows that the C. krusei enolase assembles on the tree with the fungal genes. Importantly, C. krusei lacks four amino acids in the active site compared to human enolase, as revealed by multiple sequence alignments. These differences in the substrate binding site may be exploited for the design of new anti-fungal drugs to selectively block this enzyme. The lack of the important amino acids in the active site also indicates that C. krusei enolase might have evolved as a member of a mechanistically diverse enolase superfamily catalying somewhat different reactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

VP6, the intermediate capsid protein of the virion, specifies subgroup specificity of rotavirus, It is also the most conserved, both at nucleotide and amino acid levels, among group A rotaviruses and is the target of choice for rotavirus detection, In this study we report the sequence of the subgroup I (SGI)-specific VP6 from the serotype G2 strain IS2 isolated from a child suffering from acute diarrhoea in Bangalore ana its comparison with the published VP6 sequences. Interestingly, IS2 gene 6 shared highest homology with that from bovine UK strain and the protein contained substitutions by lysine at amino acid positions 97 and 134, In contrast, the amino acids Met and Glu/Asp at these respective positions are highly conserved in all the other group A rotaviruses sequenced so far, These observations have obvious implications for the evolution of serotype G2 and G2-like strains circulating in India, The SGI VP6, of a human rotavirus, possessing epitopes that are conformationally similar to those found in the native protein in the virion, was successfully expressed in E. coli and purified for the first time by single-step affinity chromatography.