927 resultados para Piecewise linear techniques
Resumo:
The use of expert knowledge to quantify a Bayesian Network (BN) is necessary when data is not available. This however raises questions regarding how opinions from multiple experts can be used in a BN. Linear pooling is a popular method for combining probability assessments from multiple experts. In particular, Prior Linear Pooling (PrLP), which pools opinions then places them into the BN is a common method. This paper firstly proposes an alternative pooling method, Posterior Linear Pooling (PoLP). This method constructs a BN for each expert, then pools the resulting probabilities at the nodes of interest. Secondly, it investigates the advantages and disadvantages of using these pooling methods to combine the opinions of multiple experts. Finally, the methods are applied to an existing BN, the Wayfinding Bayesian Network Model, to investigate the behaviour of different groups of people and how these different methods may be able to capture such differences. The paper focusses on 6 nodes Human Factors, Environmental Factors, Wayfinding, Communication, Visual Elements of Communication and Navigation Pathway, and three subgroups Gender (female, male),Travel Experience (experienced, inexperienced), and Travel Purpose (business, personal) and finds that different behaviors can indeed be captured by the different methods.
Resumo:
This paper proposes the addition of a weighted median Fisher discriminator (WMFD) projection prior to length-normalised Gaussian probabilistic linear discriminant analysis (GPLDA) modelling in order to compensate the additional session variation. In limited microphone data conditions, a linear-weighted approach is introduced to increase the influence of microphone speech dataset. The linear-weighted WMFD-projected GPLDA system shows improvements in EER and DCF values over the pooled LDA- and WMFD-projected GPLDA systems in inter-view-interview condition as WMFD projection extracts more speaker discriminant information with limited number of sessions/ speaker data, and linear-weighted GPLDA approach estimates reliable model parameters with limited microphone data.
Resumo:
Organisations are constantly seeking new ways to improve operational efficiencies. This study investigates a novel way to identify potential efficiency gains in business operations by observing how they were carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how these trade-offs can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A number of optimisation techniques are proposed to explore and assess alternative execution scenarios. The objective function is represented by a cost structure that captures different process dimensions. An experimental evaluation is conducted to analyse the performance and scalability of the optimisation techniques: integer linear programming (ILP), hill climbing, tabu search, and our earlier proposed hybrid genetic algorithm approach. The findings demonstrate that the hybrid genetic algorithm is scalable and performs better compared to other techniques. Moreover, we argue that the use of ILP is unrealistic in this setup and cannot handle complex cost functions such as the ones we propose. Finally, we show how cost-related insights can be gained from improved execution scenarios and how these can be utilised to put forward recommendations for reducing process-related cost and overhead within organisations.
Resumo:
Objective The aim of this study was to determine the linear acceleration, time-to-peak acceleration, and effect of hand position comparing 2 clinicians completing a thoracic manipulation. Methods Thirteen volunteers received a right- and left-“handed” prone thoracic manipulation while accelerations were recorded by an inertial sensor. Peak thrust acceleration and time-to-peak thrust were measured. Results There were differences in thrust acceleration between right- and left-handed techniques for one therapist. The mean peak thrust acceleration was different between therapists, with the more practiced therapist demonstrating greater peak thrust accelerations. Time-to-peak acceleration also revealed between therapist differences, with the more practiced therapist demonstrating shorter time-to-peak acceleration. Cavitation data suggested that manipulations with greater accelerations were more likely to result in cavitation. Conclusion The results of this study suggest that with greater frequency of use, therapists are likely to achieve greater accelerations and shorter time-to-peak accelerations. Furthermore, this study showed that an inertial sensor can be used to quantify important variables during thoracic manipulation and are able to detect intertherapist differences in technique.
Resumo:
Using a combination of multivariate statistical techniques and the graphical assessment of major ion ratios, the influences on hydrochemical variability of coal seam gas (or coal bed methane) groundwaters from several sites in the Surat and Clarence-Moreton basins in Queensland, Australia, were investigated. Several characteristic relationships between major ions were observed: 1) strong positive linear correlation between the Na/Cl and alkalinity/Cl ratios; 2) an exponentially decaying trend between the Na/Cl and Na/alkalinity ratios; 3) inverse linear relationships between increasing chloride concentrations and decreasing pH for high salinity groundwaters, and; 4) high residual alkalinity for lower salinity waters, and an inverse relationship between decreasing residual alkalinity and increasing chloride concentrations for more saline waters. The interpretation of the hydrochemical data provides invaluable insights into the hydrochemical evolution of coal seam gas (CSG) groundwaters that considers both the source of major ions in coals and the influence of microbial activity. Elevated chloride and sodium concentrations in more saline groundwaters appear to be influenced by organic-bound chlorine held in the coal matrix; a sodium and chloride ion source that has largely been neglected in previous CSG groundwater studies. However, contrastingly high concentrations of bicarbonate in low salinity waters could not be explained, and are possibly associated with a number of different factors such as coal degradation, methanogenic processes, the evolution of high-bicarbonate NaHCO3 water types earlier on in the evolutionary pathway, and variability in gas reservoir characteristics. Using recently published data for CSG groundwaters in different basins, the characteristic major ion relationships identified for new data presented in this study were also observed in other CSG groundwaters from Australia, as well as for those in the Illinois Basin in the USA. This observation suggests that where coal maceral content and the dominant methanogenic pathway are similar, and where organic-bound chlorine is relatively abundant, distinct hydrochemical responses may be observed. Comparisons with published data of other NaHCO3 water types in non-CSG environments suggest that these characteristic major ion relationships described here can: i) serve as an indicator of potential CSG groundwaters in certain coal-bearing aquifers that contain methane; and ii) help in the development of strategic sampling programmes for CSG exploration and to monitor potential impacts of CSG activities on groundwater resources.
Resumo:
This paper presents a numerical study of the response of axially loaded concrete filled steel tube (CFST) columns under lateral impact loading using explicit non-linear finite element techniques. The aims of this paper are to evaluate the vulnerability of existing columns to credible impact events as well as to contribute new information towards the safe design of such vulnerable columns. The model incorporates concrete confinement, strain rate effects of steel and concrete, contact between the steel tube and concrete and dynamic relaxation for pre-loading, which is a relatively recent method for applying a pre-loading in the explicit solver. The finite element model was first verified by comparing results with existing experimental results and then employed to conduct a parametric sensitivity analysis. The effects of various structural and load parameters on the impact response of the CFST column were evaluated to identify the key controlling factors. Overall, the major parameters which influence the impact response of the column are the steel tube thickness to diameter ratio, the slenderness ratio and the impact velocity. The findings of this study will enhance the current state of knowledge in this area and can serve as a benchmark reference for future analysis and design of CFST columns under lateral impact.
Resumo:
We describe a design and fabrication method to enable simpler manufacturing of more efficient organic solar cell modules using a modified flat panel deposition technique. Many mini-cell pixels are individually connected to each other in parallel forming a macro-scale solar cell array. The pixel size of each array is optimized through experimentation to maximize the efficiency of the whole array. We demonstrate that integrated organic solar cell modules with a scalable current output can be fabricated in this fashion and can also be connected in series to generate a scalable voltage output.
Resumo:
Aim Simulation forms an increasingly vital component of clinical skills development in a wide range of professional disciplines. Simulation of clinical techniques and equipment is designed to better prepare students for placement by providing an opportunity to learn technical skills in a “safe” academic environment. In radiotherapy training over the last decade or so this has predominantly comprised treatment planning software and small ancillary equipment such as mould room apparatus. Recent virtual reality developments have dramatically changed this approach. Innovative new simulation applications and file processing and interrogation software have helped to fill in the gaps to provide a streamlined virtual workflow solution. This paper outlines the innovations that have enabled this, along with an evaluation of the impact on students and educators. Method Virtual reality software and workflow applications have been developed to enable the following steps of radiation therapy to be simulated in an academic environment: CT scanning using a 3D virtual CT scanner simulation; batch CT duplication; treatment planning; 3D plan evaluation using a virtual linear accelerator; quantitative plan assessment, patient setup with lasers; and image guided radiotherapy software. Results Evaluation of the impact of the virtual reality workflow system highlighted substantial time saving for academic staff as well as positive feedback from students relating to preparation for clinical placements. Students valued practice in the “safe” environment and the opportunity to understand the clinical workflow ahead of clinical department experience. Conclusion Simulation of most of the radiation therapy workflow and tasks is feasible using a raft of virtual reality simulation applications and supporting software. Benefits of this approach include time-saving, embedding of a case-study based approach, increased student confidence, and optimal use of the clinical environment. Ongoing work seeks to determine the impact of simulation on clinical skills.
Resumo:
Accurate patient positioning is vital for improved clinical outcomes for cancer treatments using radiotherapy. This project has developed Mega Voltage Cone Beam CT using a standard medical linear accelerator to allow 3D imaging of the patient position at treatment time with no additional hardware required. Providing 3D imaging functionality at no further cost allows enhanced patient position verification on older linear accelerators and in developing countries where access to new technology is limited.
Resumo:
In this paper, we introduce the Stochastic Adams-Bashforth (SAB) and Stochastic Adams-Moulton (SAM) methods as an extension of the tau-leaping framework to past information. Using the theta-trapezoidal tau-leap method of weak order two as a starting procedure, we show that the k-step SAB method with k >= 3 is order three in the mean and correlation, while a predictor-corrector implementation of the SAM method is weak order three in the mean but only order one in the correlation. These convergence results have been derived analytically for linear problems and successfully tested numerically for both linear and non-linear systems. A series of additional examples have been implemented in order to demonstrate the efficacy of this approach.
Resumo:
This study implemented linear and nonlinear methods of measuring variability to determine differences in stability of two groups of skilled (n = 10) and unskilled (n = 10) participants performing 3m forward/backward shuttle agility drill. We also determined whether stability measures differed between the forward and backward segments of the drill. Finally, we sought to investigate whether local dynamic stability, measured using largest finite-time Lyapunov exponents, changed from distal to proximal lower extremity segments. Three-dimensional coordinates of five lower extremity markers data were recorded. Results revealed that the Lyapunov exponents were lower (P < 0.05) for skilled participants at all joint markers indicative of higher levels of local dynamic stability. Additionally, stability of motion did not differ between forward and backward segments of the drill (P > 0.05), signifying that almost the same control strategy was used in forward and backward directions by all participants, regardless of skill level. Furthermore, local dynamic stability increased from distal to proximal joints (P < 0.05) indicating that stability of proximal segments are prioritized by the neuromuscular control system. Finally, skilled participants displayed greater foot placement standard deviation values (P < 0.05), indicative of adaptation to task constraints. The results of this study provide new methods for sport scientists, coaches to characterize stability in agility drill performance.
Resumo:
A global framework for linear stability analyses of traffic models, based on the dispersion relation root locus method, is presented and is applied taking the example of a broad class of car-following (CF) models. This approach is able to analyse all aspects of the dynamics: long waves and short wave behaviours, phase velocities and stability features. The methodology is applied to investigate the potential benefits of connected vehicles, i.e. V2V communication enabling a vehicle to send and receive information to and from surrounding vehicles. We choose to focus on the design of the coefficients of cooperation which weights the information from downstream vehicles. The coefficients tuning is performed and different ways of implementing an efficient cooperative strategy are discussed. Hence, this paper brings design methods in order to obtain robust stability of traffic models, with application on cooperative CF models
Resumo:
Objectives To investigate whether a sudden temperature change between neighboring days has significant impact on mortality. Methods A Poisson generalized linear regression model combined with a distributed lag non-linear models was used to estimate the association of temperature change between neighboring days with mortality in a subtropical Chinese city during 2008–2012. Temperature change was calculated as the current day’s temperature minus the previous day’s temperature. Results A significant effect of temperature change between neighboring days on mortality was observed. Temperature increase was significantly associated with elevated mortality from non-accidental and cardiovascular diseases, while temperature decrease had a protective effect on non-accidental mortality and cardiovascular mortality. Males and people aged 65 years or older appeared to be more vulnerable to the impact of temperature change. Conclusions Temperature increase between neighboring days has a significant adverse impact on mortality. Further health mitigation strategies as a response to climate change should take into account temperature variation between neighboring days.
Resumo:
Aim Determining how ecological processes vary across space is a major focus in ecology. Current methods that investigate such effects remain constrained by important limiting assumptions. Here we provide an extension to geographically weighted regression in which local regression and spatial weighting are used in combination. This method can be used to investigate non-stationarity and spatial-scale effects using any regression technique that can accommodate uneven weighting of observations, including machine learning. Innovation We extend the use of spatial weights to generalized linear models and boosted regression trees by using simulated data for which the results are known, and compare these local approaches with existing alternatives such as geographically weighted regression (GWR). The spatial weighting procedure (1) explained up to 80% deviance in simulated species richness, (2) optimized the normal distribution of model residuals when applied to generalized linear models versus GWR, and (3) detected nonlinear relationships and interactions between response variables and their predictors when applied to boosted regression trees. Predictor ranking changed with spatial scale, highlighting the scales at which different species–environment relationships need to be considered. Main conclusions GWR is useful for investigating spatially varying species–environment relationships. However, the use of local weights implemented in alternative modelling techniques can help detect nonlinear relationships and high-order interactions that were previously unassessed. Therefore, this method not only informs us how location and scale influence our perception of patterns and processes, it also offers a way to deal with different ecological interpretations that can emerge as different areas of spatial influence are considered during model fitting.
Resumo:
Change point estimation is recognized as an essential tool of root cause analyses within quality control programs as it enables clinical experts to search for potential causes of change in hospital outcomes more effectively. In this paper, we consider estimation of the time when a linear trend disturbance has occurred in survival time following an in-control clinical intervention in the presence of variable patient mix. To model the process and change point, a linear trend in the survival time of patients who underwent cardiac surgery is formulated using hierarchical models in a Bayesian framework. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. We use Markov Chain Monte Carlo to obtain posterior distributions of the change point parameters including the location and the slope size of the trend and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time cumulative sum control chart (CUSUM) control charts for different trend scenarios. In comparison with the alternatives, step change point model and built-in CUSUM estimator, more accurate and precise estimates are obtained by the proposed Bayesian estimator over linear trends. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.