875 resultados para Pattern classifiers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of a gene interaction network is to map the relationships of the genes that are out of sight when a genomic study is tackled. DNA microarrays allow the measure of gene expression of thousands of genes at the same time. These data constitute the numeric seed for the induction of the gene networks. In this paper, we propose a new approach to build gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling. The interactions induced by the Bayesian classifiers are based both on the expression levels and on the phenotype information of the supervised variable. Feature selection and bootstrap resampling add reliability and robustness to the overall process removing the false positive findings. The consensus among all the induced models produces a hierarchy of dependences and, thus, of variables. Biologists can define the depth level of the model hierarchy so the set of interactions and genes involved can vary from a sparse to a dense set. Experimental results show how these networks perform well on classification tasks. The biological validation matches previous biological findings and opens new hypothesis for future studies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson’s Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson’s patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson’s disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural regeneration in stone pine (Pinus pinea L.) managed forests in the Spanish Northern Plateau is not achieved successfully under current silviculture practices, constituting a main concern for forest managers. We modelled spatio-temporal features of primary dispersal to test whether (a) present low stand densities constrain natural regeneration success and (b) seed release is a climate-controlled process. The present study is based on data collected from a 6 years seed trap experiment considering different regeneration felling intensities. From a spatial perspective, we attempted alternate established kernels under different data distribution assumptions to fit a spatial model able to predict P. pinea seed rain. Due to P. pinea umbrella-like crown, models were adapted to account for crown effect through correction of distances between potential seed arrival locations and seed sources. In addition, individual tree fecundity was assessed independently from existing models, improving parameter estimation stability. Seed rain simulation enabled to calculate seed dispersal indexes for diverse silvicultural regeneration treatments. The selected spatial model of best fit (Weibull, Poisson assumption) predicted a highly clumped dispersal pattern that resulted in a proportion of gaps where no seed arrival is expected (dispersal limitation) between 0.25 and 0.30 for intermediate intensity regeneration fellings and over 0.50 for intense fellings. To describe the temporal pattern, the proportion of seeds released during monthly intervals was modelled as a function of climate variables – rainfall events – through a linear model that considered temporal autocorrelation, whereas cone opening took place over a temperature threshold. Our findings suggest the application of less intensive regeneration fellings, to be carried out after years of successful seedling establishment and, seasonally, subsequent to the main rainfall period (late fall). This schedule would avoid dispersal limitation and would allow for a complete seed release. These modifications in present silviculture practices would produce a more efficient seed shadow in managed stands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform a review of Web Mining techniques and we describe a Bootstrap Statistics methodology applied to pattern model classifier optimization and verification for Supervised Learning for Tour-Guide Robot knowledge repository management. It is virtually impossible to test thoroughly Web Page Classifiers and many other Internet Applications with pure empirical data, due to the need for human intervention to generate training sets and test sets. We propose using the computer-based Bootstrap paradigm to design a test environment where they are checked with better reliability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drag-flick is more efficient than hits or pushes when a penalty corner situation is in effect in field hockey. Previous research has studied the biomechanical pattern of the drag-flick, trying to find the cues for an optimal performance. On the other hand, some other studies have examined the most effective visual pick-up of relevant information in shots and goalkeeper anticipation. The aim of this study was to analyse the individual differences in the drag-flick pattern in order to provide relevant information for goalkeepers. One female skilled drag-flicker participated in the study. A VICON optoelectronic sy stem (Oxford Metrics, Oxford, UK) was used to capture the drag-flicks with six cameras. The results showed that the main significant differences between right and left shots (p<0.05) in the stick angles, stick minimum angular velocity and front foot-ball distance were when the front foot heel contacted the floor(T1) and at the minimum velocity of the stick, before the dragging action (T3). The findings showed that the most relevant information might be picked up at the ball-and-stick location before the dragging action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel methodology for damage detection and location in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (principal component analysis) and damage indices (T 2 and Q). We propose the use of fiber Bragg gratings (FBGs) as strain sensors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to verify the effectiveness of new patterns of sowing and to achieve a low-input organic system in two different environments (northern and southern Europe). The study was motivated by the hypothesis that more even sowing patterns (triangular and square) would significantly enhance the growth and yield of forage maize under widely varying conditions, compared with traditional mechanised rectangular seed patterns. An experiment was conducted in Madrid and duplicated in Copenhagen during 2010. A random block design was used with a 2 × 2 factorial arrangement based on two seed-sowing patterns: traditional (rectangular) and new (even) and two weed-management conditions (herbicide use and a low-input system). In both weed-management conditions and locations, the production of aerial maize biomass was greater for the new square seed patterns. In addition, the new pattern showed a greater effectiveness in the control of weeds, both at the initial crop stages (36 and 33% fewer weeds m-2 at the 4- and 8-leaf stages, respectively, in the Copenhagen field experiment) and at the final stage. The final weed biomass for the new pattern was 568 kg ha-1 lower for the Copenhagen experiment and 277 kg ha-1 lower in Madrid field experiments. In the light of these results, the new pattern could potentially reduce the use of herbicides. The results of the experiments support the hypothesis formulated at the beginning of this study that even-sowing patterns would be relatively favourable for the growth and yield of the maize crop. In the near future, new machinery could be used to achieve new seed patterns for the optimisation of biomass yield under low-input systems. This approach is effective because it promotes natural crop-weed competition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V-structures in the predictor sub-graph, we are also able to prove that this family of polynomials does in- deed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure and we compare these bounds to the ones obtained using Vapnik-Chervonenkis dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of automatic pathological voice detection systems is to serve as tools, to medical specialists, for a more objective, less invasive and improved diagnosis of diseases. In this respect, the gold standard for those system include the usage of a optimized representation of the spectral envelope, either based on cepstral coefficients from the mel-scaled Fourier spectral envelope (Mel-Frequency Cepstral Coefficients) or from an all-pole estimation (Linear Prediction Coding Cepstral Coefficients) forcharacterization, and Gaussian Mixture Models for posterior classification. However, the study of recently proposed GMM-based classifiers as well as Nuisance mitigation techniques, such as those employed in speaker recognition, has not been widely considered inpathology detection labours. The present work aims at testing whether or not the employment of such speaker recognition tools might contribute to improve system performance in pathology detection systems, specifically in the automatic detection of Obstructive Sleep Apnea. The testing procedure employs an Obstructive Sleep Apnea database, in conjunction with GMM-based classifiers looking for a better performance. The results show that an improved performance might be obtained by using such approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces APA (?Artificial Prion Assembly?): a pattern recognition system based on artificial prion crystalization. Specifically, the system exhibits the capability to classify patterns according to the resulting prion self- assembly simulated with cellular automata. Our approach is inspired in the biological process of proteins aggregation, known as prions, which are assembled as amyloid fibers related with neurodegenerative disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, cracking of concrete due to steel reinforcement corrosion is experimentally and numerically studied. The tests combined accelerated corrosion—to generate the cracks—with impregnation under vacuum with resin containing fluorescein—to enhance their visibility under ultraviolet light. In parallel, a model—called expansive joint element—was developed to simulate the expansion of the oxide and finite elements with an embedded adaptable cohesive crack were used to describe concrete cracking. The results show that a good agreement exists between the experimental and numerical crack patterns, which constitutes promising progress towards a comprehensive understanding of corrosion-induced cracking in reinforced concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two design procedures for Radial Line Slot Antennas (RLSAs) with circular polarization and either maximum gain or an arbitrary shaped pattern are proposed. Firstly, a method to design a RLSA with any desired pattern is presented. It is based on an optimization algorithm and some measures to ensure its fast convergence and stability need to be taken. Secondly, a fast technique to calculate the length and the position of every slot in a high gain RLSA with uniform field distribution is described. Both procedures are vali dated with the design of three antennas with different characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V-structures in the predictor sub-graph, we are also able to prove that this family of polynomials does in- deed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure and we compare these bounds to the ones obtained using Vapnik-Chervonenkis dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyze the performance of several well-known pattern recognition and dimensionality reduction techniques when applied to mass-spectrometry data for odor biometric identification. Motivated by the successful results of previous works capturing the odor from other parts of the body, this work attempts to evaluate the feasibility of identifying people by the odor emanated from the hands. By formulating this task according to a machine learning scheme, the problem is identified with a small-sample-size supervised classification problem in which the input data is formed by mass spectrograms from the hand odor of 13 subjects captured in different sessions. The high dimensionality of the data makes it necessary to apply feature selection and extraction techniques together with a simple classifier in order to improve the generalization capabilities of the model. Our experimental results achieve recognition rates over 85% which reveals that there exists discriminatory information in the hand odor and points at body odor as a promising biometric identifier.