862 resultados para Path Planning Under Uncertainty
Resumo:
This study focuses on analysing the effects of nonlinear torsional stiffness on the dynam-ics of a slender elastic beam under torsional oscillations, which can be subject to helical buckling.The helical buckling of an elastic beam confined in a cylinder is relevant to many applications. Someexamples include oil drilling, medical cateters and even the conformation and functioning of DNAmolecules. A recent study showed that the formation of the helical configuration is a result of onlythe torsional load, confirming that there is a different path to helical buckling which is not related tothe sinusoidal buckling, stressing the importance of the geometrical behaviour of the beam. A lowdimensional model of an elastic beam under torsional oscillations is used to analyse its dynamical be-haviour with different stiffness characteristics, which are present before and after the helical buckling.Hardening and softening characteristics are present, as the effects of torsion and bending are coupled.With the use of numerical algorithms applied to nonlinear dynamics, such as bifurcation diagramsand basins of attraction, it is shown that the nonlinear stiffness can shift the bifurcations and inducechanges in the stability of the desirable and undesirable solutions. Therefore, the proper modellingof these stiffness nonlinearities seems to be important for a better understanding of the dynamicalbehaviour of such beams.
Resumo:
Pós-graduação em Enfermagem (mestrado profissional) - FMB
Resumo:
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength-division-multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated-protection and shared-protection schemes are considered. Given network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures, such as fiber cut and duct cut, we consider the general shared-risklink- group (SRLG) diverse routing constraints. We first resort to the integer-linear-programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA), and tabu-search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model, respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu-search (TS) method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.
Resumo:
Wavelength-routed networks (WRN) are very promising candidates for next-generation Internet and telecommunication backbones. In such a network, optical-layer protection is of paramount importance due to the risk of losing large amounts of data under a failure. To protect the network against this risk, service providers usually provide a pair of risk-independent working and protection paths for each optical connection. However, the investment made for the optical-layer protection increases network cost. To reduce the capital expenditure, service providers need to efficiently utilize their network resources. Among all the existing approaches, shared-path protection has proven to be practical and cost-efficient [1]. In shared-path protection, several protection paths can share a wavelength on a fiber link if their working paths are risk-independent. In real-world networks, provisioning is usually implemented without the knowledge of future network resource utilization status. As the network changes with the addition and deletion of connections, the network utilization will become sub-optimal. Reconfiguration, which is referred to as the method of re-provisioning the existing connections, is an attractive solution to fill in the gap between the current network utilization and its optimal value [2]. In this paper, we propose a new shared-protection-path reconfiguration approach. Unlike some of previous reconfiguration approaches that alter the working paths, our approach only changes protection paths, and hence does not interfere with the ongoing services on the working paths, and is therefore risk-free. Previous studies have verified the benefits arising from the reconfiguration of existing connections [2] [3] [4]. Most of them are aimed at minimizing the total used wavelength-links or ports. However, this objective does not directly relate to cost saving because minimizing the total network resource consumption does not necessarily maximize the capability of accommodating future connections. As a result, service providers may still need to pay for early network upgrades. Alternatively, our proposed shared-protection-path reconfiguration approach is based on a load-balancing objective, which minimizes the network load distribution vector (LDV, see Section 2). This new objective is designed to postpone network upgrades, thus bringing extra cost savings to service providers. In other words, by using the new objective, service providers can establish as many connections as possible before network upgrades, resulting in increased revenue. We develop a heuristic load-balancing (LB) reconfiguration approach based on this new objective and compare its performance with an approach previously introduced in [2] and [4], whose objective is minimizing the total network resource consumption.
Resumo:
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength division multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated protection and shared protection schemes are considered. Given the network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures such as fiber cut and duct cut, we consider the general shared risk link group (SRLG) diverse routing constraints. We first resort to the integer linear programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA) and tabu search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu search method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.
Resumo:
BACKGROUND: There are several techniques for screw insertion in upper cervical spine surgery, and the use of the 3.5-mm screw is usually the standard. However, there is no consensus regarding the feasibility of using these screws in the pediatric population. OBJECTIVE: To determine the measurement of the lamina angle, lamina and pedicle length and thickness, and lateral mass length of the topographic axial view of the axis vertebra of 2- to 10-year-old children to guide the use of surgical screws. METHODS: Seventy-five computed tomography scans from 24- to 120-month-old patients were studied. Measurements were taken in an axial view of C2 and correlated with 2 age groups and both sexes. Statistical analysis was performed with the Student t test. RESULTS: In the 24- to 48-month age group, only 5.5% of the lamina and 8.3% of the pedicles had thicknesses < 3.5 mm. In the 49- to 120-month age group, there were no lamina thickness values < 3.5 mm, and 1.2% of pedicle thicknesses were < 3.5 mm. Both age groups had no lamina and pedicle lengths < 12 mm and no lateral mass lengths > 12 mm. CONCLUSION: In the majority of cases, the use of 3.5-mm lamina and pedicle screws in children is feasible. A base value of 45 degrees for the spinolaminar angle can be adopted as a reference for insertion of screws in the C2 lamina. This information can be particularly useful for decision making during preoperative planning for C1-C2 or craniocervical arthrodesis in children.
Resumo:
On the basis of the full analytical solution of the overall unitary dynamics, the time evolution of entanglement is studied in a simple bipartite model system evolving unitarily from a pure initial state. The system consists of two particles in one spatial dimension bound by harmonic forces and having its free center of mass initially localized in space in a minimum uncertainty wavepacket. The existence of such initial states in which the bound particles are not entangled is discussed. Galilean invariance of the system ensures that the dynamics of entanglement between the two particles is independent of the wavepacket mean momentum. In fact, as shown, it is driven by the dispersive center of mass free dynamics, and evolves in a time scale that depends on the interparticle interaction in an essential way.
Resumo:
The study was conducted at the Research Laboratory of Hydraulic and Irrigation Group in the Rural Engineering Department, Technical University of Madrid (Universidad Politecnica de Madrid), Madrid, Spain. Water temperatures of 20, 30, 40 degrees C and system pressures often encountered in irrigation practices of 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190 and 200 k Pa were applied to determine the effects of different water temperatures and pressures on emitter discharge. Non-pressure compensating in-line emitter which has turbulent flow regime with a long-path (labyrinth), emitter discharge was 4 L h(-1) at system pressure of 100 kPa according to the manufacturer recommended, was used. Emitters were spaced 20 cm along the drip laterals with 16 mm diameter. Discharge equations and coefficients of variation related to temperatures of 20, 30 and 40 degrees C were obtained as q = 0.375H(0.51), q = 0.358H(0.52), q = 0.346H(0.53) and 2.68, 2.09, 3.65, respectively. Discharge of the emitter was affected by different system pressures and increased as potentially (R = 0993-0996). In general. the emitter discharge increased with increasing temperature. However, especially in the common system pressures of 90-120 k Pa, differences of obtained emitter discharges between the different water temperatures were not significant (1%).
Resumo:
The main objective of this research is to demonstrate that the Clean Development Mechanism (CDM), an instrument created under a global international treaty, can achieve multiple objectives beyond those for which it has been established. As such, while being already a powerful tool to contribute to the global fight against climate change, the CDM can also be successful if applied to different sectors not contemplated before. In particular, this research aimed at demonstrating that a wider utilization of the CDM in the tourism sector can represent an innovative way to foster sustainable tourism and generate additional benefits. The CDM was created by Article 12 of the Kyoto Protocol of the United Nations Framework Convention on Climate Change (UNFCCC) and represents an innovative tool to reduce greenhouse gases emissions through the implementation of mitigation activities in developing countries which generate certified emission reductions (CERs), each of them equivalent to one ton of CO2 not emitted in the atmosphere. These credits can be used for compliance reasons by industrialized countries in achieving their reduction targets. The logic path of this research begins with an analysis of the scientific evidences of climate change and its impacts on different economic sectors including tourism and it continues with a focus on the linkages between climate and the tourism sector. Then, it analyses the international responses to the issue of climate change and the peculiar activities in the international arena addressing climate change and the tourism sector. The concluding part of the work presents the objectives and achievements of the CDM and its links to the tourism sector by considering case studies of existing projects which demonstrate that the underlying question can be positively answered. New opportunities for the tourism sector are available.
Resumo:
Although rational models of formal planning have been seriously criticized by strategy literature, they not only remain a widely used organizational practice in private firms, but they have increasingly been entering public, professional organizations too, as part of public sector managerial reforms. This research addresses this apparent paradox, exploring the meaning of formal planning in public sector professional work. Curiously, this is an issue that remains under-investigated in the literature: the long debate on formal planning in strategy research devoted scant attention to its diffusion in the public sector, and public sector studies have scrutinized the introduction of other management tools in professional work, but very limitedly formal planning itself. In fact, little is known on the actual meaning of formal planning in public, professional services. This research is based upon a case of adoption of formal planning tools in a public hospital. Embracing a discourse analytical lens, it examines which formal planning discourse entered professional work, to what extent, and how professionals interpret it and engage with it in their practice. The analysis uncovers dynamics of social construction of meaning where, eventually, a formal planning discourse both shapes and is shaped by professional practice. In particular, it is found that formal planning rationality largely penetrated professional work, but not to the detriment of professional values. Morevover, formal planning ‘fails’ as a tool for rational decision making, but it takes up a knowledge work and a social value in professional work, as a tool for explicitation of action courses and for dialogue between otherwise more disconnected parts of the organization.
Resumo:
Landslide hazard and risk are growing as a consequence of climate change and demographic pressure. Land‐use planning represents a powerful tool to manage this socio‐economic problem and build sustainable and landslide resilient communities. Landslide inventory maps are a cornerstone of land‐use planning and, consequently, their quality assessment represents a burning issue. This work aimed to define the quality parameters of a landslide inventory and assess its spatial and temporal accuracy with regard to its possible applications to land‐use planning. In this sense, I proceeded according to a two‐steps approach. An overall assessment of the accuracy of data geographic positioning was performed on four case study sites located in the Italian Northern Apennines. The quantification of the overall spatial and temporal accuracy, instead, focused on the Dorgola Valley (Province of Reggio Emilia). The assessment of spatial accuracy involved a comparison between remotely sensed and field survey data, as well as an innovative fuzzylike analysis of a multi‐temporal landslide inventory map. Conversely, long‐ and short‐term landslide temporal persistence was appraised over a period of 60 years with the aid of 18 remotely sensed image sets. These results were eventually compared with the current Territorial Plan for Provincial Coordination (PTCP) of the Province of Reggio Emilia. The outcome of this work suggested that geomorphologically detected and mapped landslides are a significant approximation of a more complex reality. In order to convey to the end‐users this intrinsic uncertainty, a new form of cartographic representation is needed. In this sense, a fuzzy raster landslide map may be an option. With regard to land‐use planning, landslide inventory maps, if appropriately updated, confirmed to be essential decision‐support tools. This research, however, proved that their spatial and temporal uncertainty discourages any direct use as zoning maps, especially when zoning itself is associated to statutory or advisory regulations.
Resumo:
In vielen Bereichen der industriellen Fertigung, wie zum Beispiel in der Automobilindustrie, wer- den digitale Versuchsmodelle (sog. digital mock-ups) eingesetzt, um die Entwicklung komplexer Maschinen m ̈oglichst gut durch Computersysteme unterstu ̈tzen zu k ̈onnen. Hierbei spielen Be- wegungsplanungsalgorithmen eine wichtige Rolle, um zu gew ̈ahrleisten, dass diese digitalen Pro- totypen auch kollisionsfrei zusammengesetzt werden k ̈onnen. In den letzten Jahrzehnten haben sich hier sampling-basierte Verfahren besonders bew ̈ahrt. Diese erzeugen eine große Anzahl von zuf ̈alligen Lagen fu ̈r das ein-/auszubauende Objekt und verwenden einen Kollisionserken- nungsmechanismus, um die einzelnen Lagen auf Gu ̈ltigkeit zu u ̈berpru ̈fen. Daher spielt die Kollisionserkennung eine wesentliche Rolle beim Design effizienter Bewegungsplanungsalgorith- men. Eine Schwierigkeit fu ̈r diese Klasse von Planern stellen sogenannte “narrow passages” dar, schmale Passagen also, die immer dort auftreten, wo die Bewegungsfreiheit der zu planenden Objekte stark eingeschr ̈ankt ist. An solchen Stellen kann es schwierig sein, eine ausreichende Anzahl von kollisionsfreien Samples zu finden. Es ist dann m ̈oglicherweise n ̈otig, ausgeklu ̈geltere Techniken einzusetzen, um eine gute Performance der Algorithmen zu erreichen.rnDie vorliegende Arbeit gliedert sich in zwei Teile: Im ersten Teil untersuchen wir parallele Kollisionserkennungsalgorithmen. Da wir auf eine Anwendung bei sampling-basierten Bewe- gungsplanern abzielen, w ̈ahlen wir hier eine Problemstellung, bei der wir stets die selben zwei Objekte, aber in einer großen Anzahl von unterschiedlichen Lagen auf Kollision testen. Wir im- plementieren und vergleichen verschiedene Verfahren, die auf Hu ̈llk ̈operhierarchien (BVHs) und hierarchische Grids als Beschleunigungsstrukturen zuru ̈ckgreifen. Alle beschriebenen Verfahren wurden auf mehreren CPU-Kernen parallelisiert. Daru ̈ber hinaus vergleichen wir verschiedene CUDA Kernels zur Durchfu ̈hrung BVH-basierter Kollisionstests auf der GPU. Neben einer un- terschiedlichen Verteilung der Arbeit auf die parallelen GPU Threads untersuchen wir hier die Auswirkung verschiedener Speicherzugriffsmuster auf die Performance der resultierenden Algo- rithmen. Weiter stellen wir eine Reihe von approximativen Kollisionstests vor, die auf den beschriebenen Verfahren basieren. Wenn eine geringere Genauigkeit der Tests tolerierbar ist, kann so eine weitere Verbesserung der Performance erzielt werden.rnIm zweiten Teil der Arbeit beschreiben wir einen von uns entworfenen parallelen, sampling- basierten Bewegungsplaner zur Behandlung hochkomplexer Probleme mit mehreren “narrow passages”. Das Verfahren arbeitet in zwei Phasen. Die grundlegende Idee ist hierbei, in der er- sten Planungsphase konzeptionell kleinere Fehler zuzulassen, um die Planungseffizienz zu erh ̈ohen und den resultierenden Pfad dann in einer zweiten Phase zu reparieren. Der hierzu in Phase I eingesetzte Planer basiert auf sogenannten Expansive Space Trees. Zus ̈atzlich haben wir den Planer mit einer Freidru ̈ckoperation ausgestattet, die es erlaubt, kleinere Kollisionen aufzul ̈osen und so die Effizienz in Bereichen mit eingeschr ̈ankter Bewegungsfreiheit zu erh ̈ohen. Optional erlaubt unsere Implementierung den Einsatz von approximativen Kollisionstests. Dies setzt die Genauigkeit der ersten Planungsphase weiter herab, fu ̈hrt aber auch zu einer weiteren Perfor- mancesteigerung. Die aus Phase I resultierenden Bewegungspfade sind dann unter Umst ̈anden nicht komplett kollisionsfrei. Um diese Pfade zu reparieren, haben wir einen neuartigen Pla- nungsalgorithmus entworfen, der lokal beschr ̈ankt auf eine kleine Umgebung um den bestehenden Pfad einen neuen, kollisionsfreien Bewegungspfad plant.rnWir haben den beschriebenen Algorithmus mit einer Klasse von neuen, schwierigen Metall- Puzzlen getestet, die zum Teil mehrere “narrow passages” aufweisen. Unseres Wissens nach ist eine Sammlung vergleichbar komplexer Benchmarks nicht ̈offentlich zug ̈anglich und wir fan- den auch keine Beschreibung von vergleichbar komplexen Benchmarks in der Motion-Planning Literatur.
Resumo:
Ziel dieser Arbeit war der Aufbau und Einsatz des Atmosphärischen chemischen Ionisations-Massenspektrometers AIMS für boden- und flugzeuggetragene Messungen von salpetriger Säure (HONO). Für das Massenspektrometer wurden eine mit Gleichspannung betriebene Gasentladungsionenquelle und ein spezielles Druckregelventil entwickelt. Während der Instrumentenvergleichskampagne FIONA (Formal Intercomparisons of Observations of Nitrous Acid) an einer Atmosphären-Simulationskammer in Valencia (Spanien) wurde AIMS für HONO kalibriert und erstmals eingesetzt. In verschiedenen Experimenten wurden HONO-Mischungsverhältnisse zwischen 100 pmol/mol und 25 nmol/mol erzeugt und mit AIMS interferenzfrei gemessen. Innerhalb der Messunsicherheit von ±20% stimmen die massenspektrometrischen Messungen gut mit den Methoden der Differenziellen Optischen Absorptions-Spektrometrie und der Long Path Absorption Photometrie überein. Die Massenspektrometrie kann somit zum schnellen und sensitiven Nachweis von HONO in verschmutzter Stadtluft und in Abgasfahnen genutzt werden.rnErste flugzeuggetragene Messungen von HONO mit AIMS wurden 2011 bei der Messkampagne CONCERT (Contrail and Cirrus Experiment) auf dem DLR Forschungsflugzeug Falcon durchgeführt. Hierbei konnte eine Nachweisgrenze von < 10 pmol/mol (3σ, 1s) erreicht werden. Bei Verfolgungsflügen wurden im jungen Abgasstrahl von Passagierflugzeugen molare HONO zu Stickoxid-Verhältnisse (HONO/NO) von 2.0 bis 2.5% gemessen. HONO wird im Triebwerk durch die Reaktion von NO mit OH gebildet. Ein gemessener abnehmender Trend der HONO/NO Verhältnisse mit zunehmendem Stickoxid-Emissionsindex wurde bestätigt und weist auf eine OH Limitierung im jungen Abgasstrahl hin.rnNeben den massenspektrometrischen Messungen wurden Flugzeugmessungen der Partikelsonde Forward Scattering Spectrometer Probe FSSP-300 in jungen Kondensstreifen ausgewertet und analysiert. Aus den gemessenen Partikelgrößenverteilungen wurden Extinktions- und optische Tiefe-Verteilungen abgeleitet und für die Untersuchung verschiedener wissenschaftlicher Fragestellungen, z.B. bezüglich der Partikelform in jungen Kondensstreifen und ihrer Klimawirkung, zur Verfügung gestellt. Im Rahmen dieser Arbeit wurde der Einfluss des Flugzeug- und Triebwerktyps auf mikrophysikalische und optische Eigenschaften von Kondensstreifen untersucht. Unter ähnlichen meteorologischen Bedingungen bezüglich Feuchte, Temperatur und stabiler thermischer Schichtung wurden 2 Minuten alte Kondensstreifen der Passagierflugzeuge vom Typ A319-111, A340-311 und A380-841 verglichen. Im Rahmen der Messunsicherheit wurde keine Änderung des Effektivdurchmessers der Partikelgrößenverteilungen gefunden. Hingegen nehmen mit zunehmendem Flugzeuggewicht die Partikelanzahldichte (162 bis 235 cm-3), die Extinktion (2.1 bis 3.2 km-1), die Absinktiefe des Kondensstreifens (120 bis 290 m) und somit die optische Tiefe der Kondensstreifen (0.25 bis 0.94) zu. Der gemessene Trend wurde durch Vergleich mit zwei unabhängigen Kondensstreifen-Modellen bestätigt. Mit den Messungen wurde eine lineare Abhängigkeit der totalen Extinktion (Extinktion mal Querschnittsfläche des Kondensstreifens) vom Treibstoffverbrauch pro Flugstrecke gefunden und bestätigt.
Resumo:
Granular matter, also known as bulk solids, consists of discrete particles with sizes between micrometers and meters. They are present in many industrial applications as well as daily life, like in food processing, pharmaceutics or in the oil and mining industry. When handling granular matter the bulk solids are stored, mixed, conveyed or filtered. These techniques are based on observations in macroscopic experiments, i.e. rheological examinations of the bulk properties. Despite the amply investigations of bulk mechanics, the relation between single particle motion and macroscopic behavior is still not well understood. For exploring the microscopic properties on a single particle level, 3D imaging techniques are required.rnThe objective of this work was the investigation of single particle motions in a bulk system in 3D under an external mechanical load, i.e. compression and shear. During the mechanical load the structural and dynamical properties of these systems were examined with confocal microscopy. Therefor new granular model systems in the wet and dry state were designed and prepared. As the particles are solid bodies, their motion is described by six degrees of freedom. To explore their entire motion with all degrees of freedom, a technique to visualize the rotation of spherical micrometer sized particles in 3D was developed. rnOne of the foci during this dissertation was a model system for dry cohesive granular matter. In such systems the particle motion during a compression of the granular matter was investigated. In general the rotation of single particles was the more sensitive parameter compared to the translation. In regions with large structural changes the rotation had an earlier onset than the translation. In granular systems under shear, shear dilatation and shear zone formation were observed. Globally the granular sediments showed a shear behavior, which was known already from classical shear experiments, for example with Jenike cells. Locally the shear zone formation was enhanced, when near the applied load a pre-diluted region existed. In regions with constant volume fraction a mixing between the different particle layers occurred. In particular an exchange of particles between the current flowing region and the non-flowing region was observed. rnThe second focus was on model systems for wet granular matter, where an additional binding liquid is added to the particle suspension. To examine the 3D structure of the binding liquid on the micrometer scale independently from the particles, a second illumination and detection beam path was implemented. In shear and compression experiments of wet clusters and bulk systems completely different dynamics compared to dry cohesive models systems occured. In a Pickering emulsion-like system large structural changes predominantly occurred in the local environment of binding liquid droplets. These large local structural changes were due to an energy interplay between the energy stored in the binding droplet during its deformation and the binding energy of particles at the droplet interface. rnConfocal microscopy in combination with nanoindentation gave new insights into the single particle motions and dynamics of granular systems under a mechanical load. These novel experimental results can help to improve the understanding of the relationship between bulk properties of granular matter, such as volume fraction or yield stress and the dynamics on a single particle level.rnrn
Resumo:
In contact shots, all the materials emerging from the muzzle (combustion gases, soot, powder grains, and metals from the primer) will be driven into the depth of the entrance wound and the following sections of the bullet track. The so-called "pocket" ("powder cavity") under the skin containing soot and gunpowder particles is regarded as a significant indicator of a contact entrance wound since one would expect that the quantity of GSR deposited along the bullet's path rapidly declines towards the exit hole. Nevertheless, experience has shown that soot, powder particles, and carboxyhemoglobin may be found not only in the initial part of the wound channel, but also far away from the entrance and even at the exit. In order to investigate the propagation of GSRs under standardized conditions, contact test shots were fired against composite models of pig skin and 25-cm-long gelatin blocks using 9-mm Luger pistol cartridges with two different primers (Sinoxid® and Sintox®). Subsequently, 1-cm-thick layers of the gelatin blocks were examined as to their primer element contents (lead, barium, and antimony as discharge residues of Sinoxid® as well as zinc and titanium from Sintox®) by means of X-ray fluorescence spectroscopy. As expected, the highest element concentrations were found in the initial parts of the bullet tracks, but also the distal sections contained detectable amounts of the respective primer elements. The same was true for amorphous soot and unburned/partly burned powder particles, which could be demonstrated even at the exit site. With the help of a high-speed motion camera it was shown that for a short time the temporary cavitation extends from the entrance to the exit thus facilitating the unlimited spread of discharge residues along the whole bullet path.