920 resultados para POTENTIAL ENERGY SURFACES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selection and transport of objects to use as tools at a distant site are considered to reflect planning. Ancestral humans transported tools and tool-making materials as well as food items. Wild chimpanzees also transport selected hammer tools and nuts to anvil sites. To date, we had no other examples of selection and transport of stone tools among wild nonhuman primates. Wild bearded capuchins (Cebus libidinosus) in Boa Vista (Piaui, Brazil) routinely crack open palm nuts and other physically well-protected foods on level surfaces (anvils) using stones (hammers) as percussive tools. Here we present indirect evidence, obtained by a transect census, that stones suitable for use as hammers are rare (study 1) and behavioral evidence of hammer transport by twelve capuchins (study 2). To crack palm nuts, adults transported heavier and harder stones than to crack other less resistant food items. These findings show that wild capuchin monkeys selectively transport stones of appropriate size and hardness to use as hammers, thus exhibiting, like chimpanzees and humans, planning in tool-use activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International carbon credit markets are based in differences between developing and developed countries greenhouse gases emissions mitigation costs and technological limits faced by developed countries. Potential of energy efficiency measures to reduce fossil fuel usage in Brazilian industrial segments is assessed, and analysis of such potentials singles out those segments and regions more apt to generate carbon credits through Clean Development Mechanism (CDM) projects. Though there are currently few Brazilian CDM projects, their number may be significantly increased, which is a positive outcome. For this purpose, it is crucial that energy conservation programs estimate how CDM may improve their economic competitiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the covalent functionalization of single-wall carbon nanotubes (SWNTs) with phenosafranine (PS) and Nile Blue (NB) dyes. These dyes can act as photosensitizers in energy and electron transfer reactions, with a potential to be applied in photodynamic therapy. Several changes in the characteristic Raman vibrational features of the dyes suggest that a covalent modification of the nanotubes with the organic dyes occurs. Specifically, the vibrational modes assigned to the NH(2) moieties of the dyes are seen to disappear in the SWNT-dye nanocomposites, corroborating the bond formation between amine groups in the dyes and carboxyl groups in the oxidized nanotubes. The X-ray absorption (XANES) data also show, that the intense band at 398.6 eV attributed to 1s -> 2p pi* transition of the nitrogen of the aromatic PS ring, is shifted due to the bonding with the carbonic structure of the SWNTs. The cytotoxicity data of dyes-modified SWNT composites in the presence and absence of light shows that the SWNT-NB (4 mu g/mL) composite presents a good photodynamic effect, namely a low toxicity in the dark, higher toxicity in the presence of light and also a reduced dye photobleaching by auto-oxidation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural, vibrational, and energetic properties of new molecular species, HSI and HIS are investigated for the first time using a state-of-the-art theoretical approach. These molecules can be easily differentiated by their geometric parameters and vibrational spectra. HSI is much more stable, and a direct unimolecular isomerization is very unlikely. Kinetics estimates predict that only at low temperatures there is a possibility of isolating HIS. For HS-I, we estimate a bond dissociation energy of 46.25 kcal/mol, and a heat of formation at 298.15 K of 12.84 kcal/mol. For the H(2)S + I(2) -> HSI + HI reaction enthalpy, we found 8.40 kcal/ mol. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxygen reduction reaction (ORR) was investigated on carbon-supported Pt-Co nanoparticle electrocatalysts with low Pt content in alkaline electrolyte. High resolution transmission electron microscopy, In situ X-ray absorption spectroscopy, and X-ray diffraction analysis evidenced large structural differences of the Pt-Co particles depending oil the route of the catalyst synthesis. It was demonstrated that although the Pt-Co materials contain low amounts of Pt, they show very good activities when the particles are formed by a Pt-rich shell and a Pt-Co core, which was obtained after submitting the electrocatalyst to a potential cycling in acid electrolyte. The high activity of this material was due to a major contribution from its higher surface area, as a result of the leaching of the Co atoms from the particle Surface. Furthermore, its high activity was ascribed to a minor contribution from the electronic interaction of the Pt atoms, at the particle surface, and the Co atoms located in the beneath layer, lowering the Pt cl-band center. As these electrocatalysts presented high activity for the ORR with low Pt content, the cost of the fuel cell cathodes could be lowered considerably. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The batch-operated bromate/phosphate/acetone/dual catalyst system was studied at four temperatures between 5 and 35 degrees C. The dynamics was simultaneously followed by potential measurements with platinum and bromide selective electrodes, and spectroscopically at two different wavelengths. By simultaneously recording these four time series it was possible to characterize the dynamics of the sequential oscillations that evolve in time. The existence of three sequential oscillatory patterns at each temperature allowed estimating the activation energies in each case. Along with the activation energy of the induction period, it was possible to trace the time evolution of the overall activation energy at four different stages as the reaction proceeds. The study was carried out for two different sets of initial concentrations and it was observed that the overall activation energy increases as reactants turn into products. This finding was propounded as a result of the decrease in the driving force, or the system`s affinity, of the catalytic oxidative bromination of acetone with acidic bromate, as the closed system evolves toward the thermodynamic equilibrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, results of the interaction between methanol and oxidized platinum surfaces as studied via transients of open-circuit potentials are presented. The surface oxidation before the exposure to interaction with 0.5 M methanol was performed at different polarization times at 1.4 V vs reversible hydrogen electrode (RHE). In spite of the small changes in the initial oxide content, the increase of the pre-polarization time induces a considerable increase of the time needed for the oxide consumption during its interaction with methanol. The influence of the identity of the chemisorbing anion on the transients was also investigated in the following media: 0.1 M HClO4, 0.5 M H2SO4, and 0.5 M H2SO4 + 0.1 mM Cl-. It was observed that the transient time increases with the energy of anion chemisorption and, more importantly, without a change in the shape of the transient, meaning that free platinum sites are available at the topmost layer all over the transient and not only in the potential region of small oxide `coverage`. The impact of the pre-polarization time and the effect of anion chemisorption on the transients are rationalized in terms of the presence of surface and subsurface oxygen driven by place exchange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Canonical Monte Carlo simulations for the Au(210)/H(2)O interface, using a force field recently proposed by us, are reported. The results exhibit the main features normally observed in simulations of water molecules in contact with different noble metal surfaces. The calculations also assess the influence of the surface topography on the structural aspects of the adsorbed water and on the distribution of the water molecules in the direction normal to the metal surface plane. The adsorption process is preferential at sites in the first layer of the metal. The analysis of the density profiles and dipole moment distributions points to two predominant orientations. Most of the molecules are adsorbed with the molecular plane parallel to surface, while others adsorb with one of the O-H bonds parallel to the surface and the other bond pointing towards the bulk liquid phase. There is also evidence of hydrogen bond formation between the first and second solvent layers at the interface. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report in this paper the occurrence of potential oscillations in a proton exchange membrane fuel cell (PEMFC) with a Pd-Pt/C anode, fed with H(2)/100 ppm CO, and operated at 30 degrees C. We demonstrate that the use of Pd-Pt/C anode enables the emergence of dynamic instabilities in a PEMFC. Oscillations are characterized by the presence of very high oscillation amplitude, ca. 0.8 V. which is almost twice that observed in a PEMFC with a Pt-Ru/C anode under similar conditions. The effects of the H(2)/CO flow rate and cell current density on the oscillatory dynamics were investigated and the mechanism rationalized in terms of the CO oxidation and adsorption processes. We also discuss the fundamental aspects concerning the operation of a PEMFC under oscillatory regime in terms of the benefit resulting from the higher average power output. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polystyrene surfaces were conditioned with surfactin and rhamnolipid biosurfactants and then assessed regarding the attachment of Staphylococcus aureus, Listeria monocytogenes, and Micrococcus lute us. The effect of different temperatures (35, 25, and 4 degrees C) on the anti-adhesive activity was also studied. Microbial adhesion to solvents and contact angle measurements were performed to characterize bacteria and material surfaces. The results showed that surfactin was able to inhibit bacterial adhesion in all the conditions analyzed, giving a 63-66% adhesion reduction in the bacterial strains at 4 degrees C. Rhamnolipid promoted a slight decrease in the attachment of S. aureus. The anti-adhesive activity of surfactin increased with the decrease in temperature, showing that this is an important parameter to be considered in surface conditioning tests. Surfactin showed good potential as an anti-adhesive compound that can be explored to protect surfaces from microbial contamination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report in this work the study of the interaction between formic acid and an oxidized platinum surface under open circuit conditions. The investigation was carried out with the aid of in situ infrared spectroscopy, and results analyzed in terms of a mathematical model and numerical simulations. It has been found that during the first seconds of the interaction a small amount of CO(2) is produced and absolutely no adsorbed CO was observed. A sudden drop in potential then follows, which is accompanied by a steep increase first of CO(2) production and then by adsorbed CO. The steep transient was rationalized in terms of an autocatalytic production of free platinum sites which enhances the overall rate of reaction. Modeling and simulation showed nearly quantitative agreement with the experimental observations and provided further insight into some experimentally inaccessible variables such as surface free sites. Finally, based on the understanding provided from the combined experimental and theoretical approach, we discuss the general aspects influencing the open circuit transient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report here new considerations about the relationship between the mass and charge variations (m/z relationship) in underpotential deposition (UPD), bulk deposition and also in the H(2)Se formation reaction. Nanogravimetric experiments were able to show the adsorption of H(2)SeO(3) on the AuO surface prior to the voltammetric sweep and that, after the AuO reduction, 0.40 monolayer of H(2)SeO(3) remains adsorbed on the newly reduced Au surface, which was enough to gives rise to the UPD layer. The UPD results indicate that the maximum coverage with Se(ads) on polycrystalline gold surface corresponds to approximately 0.40 monolayer, in good agreement with charge density results. The cyclic voltammetry experiments demonstrated that the amount of bulk Se obtained during the potential scan to approximately 2 Se monolayers, which was further confirmed by electrochemical quartz crystal microbalance (EQCM) measurements that pointed out a mass variation corresponding of 3 monolayers of Se. In addition, the Se thin films were obtained by chronoamperometric experiments, where the Au electrode was polarized at +0.10V during different times in 1.0 M H(2)SO(4) + 1.0 mM SeO(2). The topologic aspects of the electrodeposits were observed in Atomic Force Microscope (AFM) measurements. Finally, in highly negative potential polarizations, the H(2)Se formation was analyzed by voltammetric and nanogravimetric measurements. These finding brings a new light on the selenium electrodeposition and point up to a proposed electrochemical model for molecule controlled surface engineering. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrooxidation of small organic molecules on platinum surfaces usually involves different structure-dependent steps that include adsorption and desorption of various species and multiple reaction pathways. Because temperature plays a decisive role on each individual step, understanding its global influence on the reaction mechanism is often a difficult task, especially when the system is studied under far from equilibrium conditions in the presence of kinetic instabilities. Aiming at contributing to unravel this problem, herein, we report an experimental study of the role played by temperature on the electrooxidation of formic acid on a Pt(100) electrode. The system was investigated under both close and far from equilibrium conditions, and apparent activation energies were estimated using different strategies. Overall, comparable activation energies were estimated under oscillatory and quasi-stationary conditions, at high potentials. At low potentials, the poisoning process associated with the formic acid dehydration step presented a negligible dependence with temperature and, therefore, zero activation energy. On the basis of our experimental findings, we suggest that formic acid dehydration is the main, but maybe not the unique, step that differentiates the temperature dependence of the oscillatory electrooxidation of formic acid on Pt(100) with that on polycrystalline platinum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for more efficient anode catalyst than platinum to be used in direct alcohol fuel cell systems is an important challenge. In this study, boron-doped diamond film surfaces were modified with Pt, Pt-SnO(2) and Pt-Ta(2)O(5) nano-crystalline deposits by the sol-gel method to study the methanol and ethanol electro-oxidation reactions in acidic medium. Electrochemical experiments carried out in steady-state conditions demonstrate that the addition of SnO(2) to Pt produces a very reactive electrocatalyst that possibly adsorbs and/or dissociate ethanol more efficiently than pure Pt changing the onset potential of the reaction by 190 mV toward less positive potentials. Furthermore, the addition of Ta(2)O(5) to Pt enhances the catalytic activity toward the methanol oxidation resulting in a negative shift of the onset potential of 170 mV. These synergic effects indicate that the addition of these co-catalysts inhibits the poisoning effect caused by strongly adsorbed intermediary species. Since the SnO(2) catalyst was more efficient for ethanol oxidation, it could probably facilitate the cleavage of the C-C bond of the adsorbed intermediate fragments of the reaction. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platinum stepped surfaces vicinal to the (1 1 0) crystallographic pole have been investigated voltammetrically in 0.1 M HClO(4) and 0.1 M H(2)SO(4) solutions. Changes in the voltammetric profile with the step density suggest the existence of two types of surface sites, that has been ascribed to linear and bidimensional domains. This result indicates the existence of important restructuring processes that separate the real surface distribution from the nominal one. The electronic properties of the surfaces have been characterized with the CO charge displacement method and the potential of zero total charge has been calculated as a function of the step density. (c) 2009 Elsevier B.V. All rights reserved.