871 resultados para POLYURETHANE FOAM
Resumo:
Hydrogels may be described as cross~linked hydrophilic polymers that swell but do not dissolve in water. They have been utilised in many biomedical applications, as there is the potential to manipulate the properties for a given application by changing the chemical structure of the constituent monomers. This project is focused on the development of novel hydrogels for keratoprosthesis (KPro). The most commonly used KPro model consists of a tansparent central stem witb a porous peripheral skirt. Clear poly (methyl methacrylate) (PMMA) core material used in the Strampelli KPros prosthesis has not been the cause of failure found in other core and skirt prostheses. However, epithelialization of this kind of solid, rigid optic material is clearly impossible. The approach to the development of a hydrogeJ for potential KPro use adopted in this work is to develop soft core material to mimic the properties of the natural cornea by incorporating some hydrophilic monomers such as N, N-dimethyacrylamide (NNSMA) N~vinyl pyrrolidone (NVP) and acryloylmorpholine (AMO) with methyl methactylate (MMA). Most of these materials have been used in other ophthalmic applications, such as contact lens. However, an unavoidable limitation of simple .MMA copolymers as conventional hydrogels is poor mechanical strength. The hydrogel for use in this application must be able to withstand the stresses involved during the surgical procedure involved with KPro surgery and the in situ stresses such as the deforming force of the eyelid during the blink cycle. Thus, semi-interpenetrating polymer networks (SIPNs) based on ester polyurethane, AMO, NVP and NNDMA were examined in this work and were found to have much improved mechanical properties at water contents between 40% and 70%. Polyethylene glycol monomethacrylate (PEG MA) was successfully incorporated in order to modulate protein deposition and cell adhesion. Porous peripheral skirts were fabricated using different types of porosigen. The water content mechanical properties, surface properties and cell response of these various materials have been investigated in this thesis. These studies demonstrated that simple hydrogel SIPNs which show isotropic mechanical behaviour, are not ideal KPro materials since they do not mimic the anisotropic behaviour of natural cornea. The final stage of the work has concentrated on the study of hydrogels reinforced with mesh materials. They offer a promising approach to making a hydrogel that is very flexible but strong under tension, thereby having mechanical properties closer to the natural cornea than has been previously possible.
Resumo:
Single phase solutions containing three components have been observed to exhibit foaminess near a single to two liquid phase boundary. It was seen, in a sintered plate column under mass transfer conditions, that distillation systems where the liquid appeared as one phase in one part of a column and two phases in another part, exhibited foaminess when the liquid concentration was near the one phase to two phase boundary. Various ternary systems have been studied in a 50 plate. 30mm i.d. Oldershaw column and it was observed that severe foaming occurred in the middle section of the column near the one liquid phase to two liquid phase boundary and no foaming occurred at the end of the column where liquid was either one phase or two phase. This is known as Ross type foam. Mass transfer experiments with Ross type ternary systems have been carried out in a perspex simulator with small and large hole diameter trays. It was observed that by removal of the more volatile component, Ross type foam did not build up on the tray. Severe entrainment of liquid was observed in all cases leading to a 'dry' tray, even with a low free area small diameter hole tray which was expected to produce a bubbly mixture. Entrainment was more severe for high gas superficial velocities and large hole diameters. This behaviour is quite different from the build up of foam observed when one liquid phase/two liquid phase Ross systems were contacted with air above a small sintered disc or with vapour in an Oldershaw distillation column. This observation explains why distillation columns processing mixtures which change from one liquid phase to two liquid phases (or vice versa) must be severely derated to avoid flooding. Single liquid phase holdups at the spray to bubbly transition were measured using a perspex simulator similar to that of Porter & Wong (17). i.e. with no liquid cross flow. A light transmission technique was used to measure the transition from spray regime to bubbly regime. The effect of tray thickness and the ratio of hole diameter to tray thickness on the transition was evaluated using trays of the same hole diameter and free area but having thickness of 2.38 mm, 4 mm, and 6.35 mm. The liquid holdup at the transition was less with the thin metal trays. This result may be interpreted by the theory of Lockett (101), which predicts the transition liquid holdup in terms of the angle of the gas iet leaving the holes in the sieve plate. All the existing correlations have been compared and none were found to be satisfactory and these correlations have been modified in view of the experimental results obtained. A new correlation has been proposed which takes into account the effect of the hole diameter to tray thickness ratio on the transition and good agreement was obtained between the experimental results and the correlated values of the liquid holdup at the transition. Results have been obtained for two immiscible liquids [kerosene and water] on trays to determine whether foaming can be eliminated by operating in the spray regime. Kerosene was added to a fixed volume of water or water was added to a fixed volume of kerosene. In both cases, there was a transition from spray to bubbly. In the water fixed system. the liquid holdup at the transition was slightly less than the pure kerosene system. Whilst for the kerosene fixed system, the transition occurred at much lower liquid holdups. Trends In the results were similar to those for single liquid phase. New correlations have been proposed for the two cases. It has been found that Ross type foams, observed in a sintered plate column and in the Oldershaw column can be eliminated by either carrying out the separation in a packed column or by the addition of defoaming additives.
Resumo:
Central venous catheters have become an integral part of patient management however they are associated with many complications including infection. Despite efforts being made to reduce the incidence of such infect ions the problem continues to increase and has resource implications for the Health Service. Studies relating to the source of microorganisms causing CVC-associated infection, the cost of such infections and the efficacy of an antimicrobial catheter have been undertaken. Thirty patients who required a CVC as part of their medical management and underwent cardiac surgery had the distal tips of their catheters sampled whilst in situ. Sampling took place within 1 h of catheter placement. Bacteria were isolated from 16% of the catheter distal tips sampled in situ. The guidewires used to insert the devices were also contaminated (50%). When CVC were inserted via a protective sheath, avoiding contact with the skin. the incidence of microbial contamination was reduced. These findings suggest that despite rigorous skin disinfection and strict aseptic technique, viable microorganisms are impacted onto the distal tip of CVC during the insertion procedure. Needleless intravascular access devices have been introduced in order to reduce the incidence of need1estick injury. However, it was unclear whether such connectors would act as a portal of entry for microorganisms to CVC. The efficacy of these devices was investigated. Within the controlled laboratory environment it was demonstrated that needleless devices, when challenged with microorganisms, did not allow the passage of microbes when flu id was injected. This therefore suggested that the devices should not increase the risk of catheter colonisation. When used in clinical practice however microbial contamination of the needleless connectors was 55 % in comparison to the routinely used luer connectors (23%). The cost of infections associated with CVC was determined. Twenty patients catheterised with a CVC designed for long term use who were admitted to hospital with a presumptive diagnosis of catheter-related infection were studied. The treatment given specifically for this infection was costed. The mean cost of such an infection was £ 1781.81. Throughout the UK this may amount to £1.565.906 per annum. The cost of infections associated with CVC designed for short term use was estimated to be between 5 and 7 million pounds per annum in the UK. In an attempt to reduce both the incidence and cost of catheter- related infection antimicrobial CVC have been developed. The efficacy of a novel polyurethane CVC impregnated on both the internal and external catheter surface with the quaternary ammonium compound benzalkonium chloride was investigated. Eighty eight patients received an antimicrobial catheter and 78 patients a conventional polyurethane CVC. The anti-microbial CVC resulted in a reduction in microbial colonisation of the external and internal polymer surfaces as compared to the control device. The observed reduction in microbial colonisation with the anti-microbial CVC may decrease the likelihood of subsequent infection offering a useful approach to the prevention of catheter-related infections.
Resumo:
As systems for computer-aided-design and production of mechanical parts have developed, there has arisen a need for techniques for the comprehensive description of the desired part, including its 3-D shape. The creation and manipulation of shapes is generally known as geometric modelling. It is desirable that links be established between geometric modellers and machining programs. Currently, unbounded APT and some bounded geometry systems are being widely used in manufacturing industry for machining operations such as: milling, drilling, boring and turning, applied mainly to engineering parts. APT systems, however, are presently only linked to wire-frame drafting systems. The combination of a geometric modeller and APT will provide a powerful manufacturing system for industry from the initial design right through part manufacture using NC machines. This thesis describes a recently developed interface (ROMAPT) between a bounded geometry modeller (ROMULUS) and an unbounded NC processor (APT). A new set of theoretical functions and practical algorithms for the computer aided manufacturing of 3D solid geometric model has been investigated. This work has led to the development of a sophisticated computer program, ROMAPT, which provides a new link between CAD (in form of a goemetric modeller ROMULUS) and CAM (in form of the APT NC system). ROMAPT has been used to machine some engineering prototypes successfully both in soft foam material and aluminium. It has been demonstrated above that the theory and algorithms developed by the author for the development of computer aided manufacturing of 3D solid modelling are both valid and applicable. ROMAPT allows the full potential of a solid geometric modeller (ROMULUS) to be further exploited for NC applications without requiring major investment in new NC processor. ROMAPT supports output in APT-AC, APT4 and the CAM-I SSRI NC languages.
Resumo:
Atherosclerosis is the principal cause of death in the United States, Europe and much of Asia. During the last decade, inflammation has been suggested to play a key role in the development of atherosclerosis. Reactive oxygen species (ROS) released during inflammation additionally oxidize LDL, which is subsequently taken up in an unregulated way through scavenger receptors on macrophages to form foam cells, the hallmark of atherosclerotic lesions. Previous work has shown that the lipid ceramide, which is found in aggregated LDL and in atherosclerotic plaques, decreases intracellular peroxide most likely through reducing NADPH oxidase activity. Ceramide is an important component of membrane microdomains called lipid rafts which are important for membrane protein function. Endogenous ceramide enhances lipid raft f'ormation and alters theirs composition. NADPH oxidase membrane subunits cytochrome b558 (which includes gp91) strongly associates with lipid rafts Therefore present study investigated whether short chain ceramides reduce NADPH oxidase in U937 monocytes by disrurting the membrane component of NADPH oxidase. Results showed that C2 ceramide alters the distribution of raft marker, flottillin and the raft environment. NADPH oxidase membrane component gp9J phox and cytosolic component p47 phox were identified in rafts. C2 ceramide reduces both gp91 and p47 phox in rafts, which leads to the decrease of peroxide production by NADPH oxidase. Ceramide is also an important second messenger involved in many different signaling pathways associated with atherogenesis from the activation of sphingomyelinase (SMase). It has been reported that SMase enhances LDL receptor mediated LDL endocytosis. However, no study has been done to investigate the effect of ceramide on scavenger receptors such as CD36 and oxidized LDL (OxLDL) uptake. CD36 is the major recertor far OxLDL. Reduced CD36 expression results in less foam cell formation and less atherosclerotic lesion without disrupting the clearance of OxLDL from plasma. This thesis shows that ceramides significantly reduce CD36 surface expression on U937 monocytes, macrophages and human primary monocytes. This effect is seen using both synthetic short chain ceramide and SMase catalysed long chain ceramide treatment. To investigate whether the effect of ceramide on CD36 is functional, OxLOL uptake was measured in ceramide treated cells. Ceramide reduces the uptake of OxLOL by both U937 monocytes and PMA-differentiated macrophages. The mechanism of ceramide reduction of CD36 expression was studied by measuring the surface antigen using flow cytometry and fluorescence microscopy, whole cellular CD36 expression and shedding of C036 by Western blotting of cell lysates and cell culture supernatants and mRNA level of CD36 using RT-PCR. Ceramide reduces shedding of CD36, activates mRNA expression of CD36 and induces intracellular CD36 accumulation probably through retaining the receptor inside cells. In summary, ceramides modulate several of the processes involved in LOL oxidation and uptake by CD36 receptors on monocytes/macrophages in a way which may protect against atherosclerosis.
Resumo:
The present thesis investigates targeted (locally and systemically) delivery of a novel group of inhibitors of enzyme transglutaminases (TGs). TGs are a widely distributed group of enzymes that catalyse the formation of isopeptide bonds between the y-carboxamide group of protein-bound glutamines and the a-amino group of protein-bound lysines or polyamines. The first group of the novel inhibitors tested were the tluorescently labelled inhibitors of Factor XIIIa (FXIIIa). These small, non-toxic inhibitors have the potential to prevent stabilisation of thrombi by FXIIIa and consequently increase the natural rate of thrombolysis, in addition it reduces staphylococcal colonisation of catheters by inhibiting their FXIIIa¬mediated cross-linking to blood clot proteins on the central venous catheter (CVCs) surface. The aim of this work was to incorporate the FXIIIa inhibitor either within coating of polyurethane (PU) catheters or to integrate it into silicone catheters, so as to reduce the incidence of thrombotic occlusion and associated bacterial infection in CVCs. The initial work focused on the incorporation of FXIIIa inhibitors within polymeric coatings of PU catheters. After defining the key characteristics desired for an effective polymeric-coating, polyvinylpyrrolidone (PVP), poly(lactic-co-glycolic acid) (PLGA) or their combination were studies as polymers of choice for coating of the catheters_ The coating was conducted by dip-coating method in a polymer solution containing the inhibitor. Upon incubation of the inhibitor-and polymer-coated strips in buffer, PVP was dissolved instantly, generating fast and significant drug release, whilst PLGA did not dissolve, yielding a slow and an insufficient amount of drug release. Nevertheless, the drug release profile was enhanced upon employing a blend solution of PVP and PLGA. The second part of the study was to incorporate the FXIIIa inhibitor into a silicone elastomer; results demonstrated that FXIIIa inhibitor can be incorporated and released from silicone by using citric acid (CA) and sodium bicarbonate (SB) as additives and the drug release rate can be controlled by the amount of incorporated additives in the silicone matrix. Furthermore, it was deemed that the inhibitor was still biologically active subsequent to being released from the silicone elastomer strips. Morphological analysis confirmed the formation of channels and cracks inside the specimens upon the addition of CA and SB. Nevertheless, the tensile strength, in addition to Young's modulus of silicone elastomer strips, decreased constantly with an increasing amount of amalgamated CA/ SB in the formulations. According to our results, incorporation of FXIIIa inhibitor into catheters and other medical implant devices could offer new perspectives in preventing bio-material associated infections and thrombosis. The use of tissue transglutaminase (T02) inhibitor for treating of liver fibrosis was also investigated. Liver fibrosis is characterized by increased synthesis and decreased degradation of the extracellular matrix (ECM). Transglutaminase-mediated covalent cross-linking is involved in the stabilization of ECM in human liver fibrosis. Thus, TG2 inhibitors may be used to counteract the decreased degradation of the ECM. The potential of a liposome based drug delivery system for site specific delivery of the fluorescent TG2 inhibitor into the liver was investigated; results indicated that the TG2 inhibitor can be successfully integrated into liposomes and delivered to the liver, therefore demonstrating that liposomes can be employed for site-specific delivery of TG2 inhibitors into the liver and TG2 inhibitor incorporating liposomes could offer a new approach in treating liver fibrosis and its end stage disease cirrhosis.
Resumo:
The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system and point-spread function of nanoparticles within the target was measured.
Resumo:
The aged population have an increased susceptibility to infection, therefore function of the innate immune system may be impaired as we age. Macrophages, and their precursors monocytes, play an important role in host defence in the form of phagocytosis, and also link the innate and adaptive immune system via antigen presentation. Classically-activated ‘M1’ macrophages are pro-inflammatory, which can be induced by encountering pathogenic material or pro-inflammatory mediators. Alternatively activated ‘M2’ macrophages have a largely reparative role, including clearance of apoptotic bodies and debris from tissues. Despite some innate immune receptors being implicated in the clearance of apoptotic cells, the process has been observed to have a dominant anti-inflammatory phenotype with cytokines such as IL-10 and TGF-ß being implicated. The atherosclerotic plaque contains recruited monocytes and macrophages, and is a highly inflammatory environment despite high levels of apoptosis. At these sites, monocytes differentiate into macrophages and gorge on lipoproteins, resulting in formation of ‘foam cells’ which then undergo apoptosis, recruiting further monocytes. This project seeks to understand why, given high levels of apoptosis, the plaque is a pro-inflammatory environment. This phenomenon may be the result of the aged environment or an inability of foam cells to elicit an anti-inflammatory effect in response to dying cells. Here we demonstrate that lipoprotein treatment of macrophages in culture results in reduced capacity to clear apoptotic cells. The capability of lipoprotein treated macrophages to respond to inflammatory stimuli is also shown. Monocyte recruitment to the plaque is currently under study, as is apoptotic cell-mediated immune modulation of human monocyte-derived macrophages.
Resumo:
A multistage distillation column in which mass transfer and a reversible chemical reaction occurred simultaneously, has been investigated to formulate a technique by which this process can be analysed or predicted. A transesterification reaction between ethyl alcohol and butyl acetate, catalysed by concentrated sulphuric acid, was selected for the investigation and all the components were analysed on a gas liquid chromatograph. The transesterification reaction kinetics have been studied in a batch reactor for catalyst concentrations of 0.1 - 1.0 weight percent and temperatures between 21.4 and 85.0 °C. The reaction was found to be second order and dependent on the catalyst concentration at a given temperature. The vapour liquid equilibrium data for six binary, four ternary and one quaternary systems are measured at atmospheric pressure using a modified Cathala dynamic equilibrium still. The systems with the exception of ethyl alcohol - butyl alcohol mixtures, were found to be non-ideal. Multicomponent vapour liquid equilibrium compositions were predicted by a computer programme which utilised the Van Laar constants obtained from the binary data sets. Good agreement was obtained between the predicted and experimental quaternary equilibrium vapour compositions. Continuous transesterification experiments were carried out in a six stage sieve plate distillation column. The column was 3" in internal diameter and of unit construction in glass. The plates were 8" apart and had a free area of 7.7%. Both the liquid and vapour streams were analysed. The component conversion was dependent on the boilup rate and the reflux ratio. Because of the presence of the reaction, the concentration of one of the lighter components increased below the feed plate. In the same region a highly developed foam was formed due to the presence of the catalyst. The experimental results were analysed by the solution of a series of simultaneous enthalpy and mass equations. Good agreement was obtained between the experimental and calculated results.
Resumo:
The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system and point-spread function of nanoparticles within the target was measured.
Resumo:
Individuals within the aged population show an increased susceptibility to infection, implying a decline in immune function, a phenomenon known as immunosenescence. Paradoxically, an increase in autoimmune disease, such as rheumatoid arthritis, is also associated with ageing, therefore some aspects of the immune system appear to be inappropriately active in the elderly. The above evidence suggests inappropriate control of the immune system as we age. Macrophages, and their precursors monocytes, play a key role in control of the immune system. They play an important role in host defence in the form of phagocytosis, and also link the innate and adaptive immune system via antigen presentation. Macrophages also have a reparative role, as professional phagocytes of dead and dying cells. Clearance of apoptotic cells by macrophages has also been shown to directly influence immune responses in an anti-inflammatory manner. Inappropriate control of macrophage function with regards to dead cell clearance may contribute to pathology as we age. The aims of this study were to assess the impact of lipid treatment, as a model of the aged environment, on the ability of macrophages to interact with, and respond to, apoptotic cells. Using a series of in vitro cell models, responses of macrophages (normal and lipid-loaded) to apoptotic macrophages (normal and lipid-loaded) were investigated. Monocyte recruitment to apoptotic cells, a key process in resolving inflammation, was assessed in addition to cytokine responses. Data here shows, for the first time, that apoptotic macrophages (normal and lipid-loaded) induce inflammation in human monocyte-derived macrophages, a response that could drive inflammation in age-associated pathology e.g. atherosclerosis. Monoclonal antibody inhibition studies suggest the classical chemokine CX3CL1 may be involved in monocyte recruitment to apoptotic macrophages, but not apoptotic foam cells, therefore differential clearance strategies may be employed following lipid-loading. CD14, an important apoptotic cell tethering receptor, was not found to have a prominent role in this process, whilst the role for ICAM-3 remains unclear. Additionally, a small pilot study using macrophages from young (<25) and mid-life (>40) donors was undertaken. Preliminary data was gathered to assess the ability of primary human monocyte-derived macrophages, from young and mid-life donors, to interact with, and respond to, apoptotic cells. MØ from mid-life individuals showed no significant differences in their ability to respond to immune modulation by apoptotic cells compared to MØ from young donors. Larger cohorts would be required to investigate whether immune modulation of MØ by apoptotic cells contribute to inflammatory pathology throughout ageing.
Resumo:
Porous 3D polymer scaffolds prepared by TIPS from PLGA (53:47) and PS are intrinsically hydrophobic which prohibits the wetting of such porous media by water. This limits the application of these materials for the fabrication of scaffolds as supports for cell adhesion/spreading. Here we demonstrate that the interior surfaces of polymer scaffolds can be effectively modified using atmospheric air plasma (AP). Polymer films (2D) were also modified as control. The surface properties of wet 2D and 3D scaffolds were characterised using zeta-potential and wettability measurements. These techniques were used as the primary screening methods to assess surface chemistry and the wettability of wet polymer constructs prior and after the surface treatment. The surfaces of the original polymers are rather hydrophobic as highlighted but contain acidic functional groups. Increased exposure to AP improved the water wetting of the treated surfaces because of the formation of a variety of oxygen and nitrogen containing functions. The morphology and pore structure was assessed using SEM and a liquid displacement test. The PLGA and PS foam samples have central regions which are open porous interconnected networks with maximum pore diameters of 49 μm for PLGA and 73 μm for PS foams. (Figure Presented) © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
An optical in-fiber modal interferometer-based volume strain sensor for earthquake prediction is proposed and experimentally demonstrated. The sensing element is formed by wrapping a multimode-singlemode-multimode fiber structure onto a polyurethane hollow column. Due to the modal interference between the excited guided modes in the fiber, strong interference pattern could be observed in the transmission spectrum. Theoretical analysis verifies that the resonant wavelength shifts as a result of the volume strain variation caused by the column deformation with square root relationship. Sensitivity > 3.93 pm/με within the volume strain ranging from 0 to 1300 με is also experimentally demonstrated. By taking the response of bidirectional change of volume strain and the sluggish character of the employed sensing material into consideration, the sensing system presents good repeatability and stability. © 2001-2012 IEEE.
Resumo:
A high-performance fuel gauging sensor is described that uses five diaphragm-based pressure sensors, which are monitored using a linear array of polymer optical fiber Bragg gratings. The sensors were initially characterized using water, revealing a sensitivity of 98 pm/cm for four of the sensors and 86 pm/cm for the fifth. The discrepancy in the sensitivity of the fifth sensor has been explained as being a result of the annealing of the other four sensors. Initial testing in JET A-1 aviation fuel revealed the unsuitability of silicone rubber diaphragms for prolonged usage in fuel. A second set of sensors manufactured with a polyurethane-based diaphragm showed no measurable deterioration over a three month period immersed in fuel. These sensors exhibited a sensitivity of 39 pm/cm, which is less than the silicone rubber devices due to the stiffer nature of the polyurethane material used.
Resumo:
The applicability of carbon-based foams as an insulating or active cooling material in thermal protection systems (TPSs) of space vehicles is considered using a computer modeling. This study focuses on numerical investigation of the performance of carbon foams for use in TPSs of space vehicles. Two kinds of carbon foams are considered in this study. For active cooling, the carbon foam that has a thermal conductivity of 100 W/m-k is used and for the insulation, the carbon foam having a thermal conductivity of 0.225 W/m-k is used. A 3D geometry is employed to simulate coolant flow and heat transfer through carbon foam model. Gambit has been used to model the 3D geometry and the numerical simulation is carried out in FLUENT. Numerical results from this thesis suggests that the use of CFOAM and HTC carbon foams in TPS's may effectively protect the aluminum structure of the space shuttle during reentry of the space vehicle.