Local and systemic delivery of a novel group of inhibitors of transglutaminase enzyme: A potential approach for treating of catheter-related complications and liver fibrosis


Autoria(s): Daneshpour, Nooshin
Data(s)

01/08/2010

Resumo

The present thesis investigates targeted (locally and systemically) delivery of a novel group of inhibitors of enzyme transglutaminases (TGs). TGs are a widely distributed group of enzymes that catalyse the formation of isopeptide bonds between the y-carboxamide group of protein-bound glutamines and the a-amino group of protein-bound lysines or polyamines. The first group of the novel inhibitors tested were the tluorescently labelled inhibitors of Factor XIIIa (FXIIIa). These small, non-toxic inhibitors have the potential to prevent stabilisation of thrombi by FXIIIa and consequently increase the natural rate of thrombolysis, in addition it reduces staphylococcal colonisation of catheters by inhibiting their FXIIIa¬mediated cross-linking to blood clot proteins on the central venous catheter (CVCs) surface. The aim of this work was to incorporate the FXIIIa inhibitor either within coating of polyurethane (PU) catheters or to integrate it into silicone catheters, so as to reduce the incidence of thrombotic occlusion and associated bacterial infection in CVCs. The initial work focused on the incorporation of FXIIIa inhibitors within polymeric coatings of PU catheters. After defining the key characteristics desired for an effective polymeric-coating, polyvinylpyrrolidone (PVP), poly(lactic-co-glycolic acid) (PLGA) or their combination were studies as polymers of choice for coating of the catheters_ The coating was conducted by dip-coating method in a polymer solution containing the inhibitor. Upon incubation of the inhibitor-and polymer-coated strips in buffer, PVP was dissolved instantly, generating fast and significant drug release, whilst PLGA did not dissolve, yielding a slow and an insufficient amount of drug release. Nevertheless, the drug release profile was enhanced upon employing a blend solution of PVP and PLGA. The second part of the study was to incorporate the FXIIIa inhibitor into a silicone elastomer; results demonstrated that FXIIIa inhibitor can be incorporated and released from silicone by using citric acid (CA) and sodium bicarbonate (SB) as additives and the drug release rate can be controlled by the amount of incorporated additives in the silicone matrix. Furthermore, it was deemed that the inhibitor was still biologically active subsequent to being released from the silicone elastomer strips. Morphological analysis confirmed the formation of channels and cracks inside the specimens upon the addition of CA and SB. Nevertheless, the tensile strength, in addition to Young's modulus of silicone elastomer strips, decreased constantly with an increasing amount of amalgamated CA/ SB in the formulations. According to our results, incorporation of FXIIIa inhibitor into catheters and other medical implant devices could offer new perspectives in preventing bio-material associated infections and thrombosis. The use of tissue transglutaminase (T02) inhibitor for treating of liver fibrosis was also investigated. Liver fibrosis is characterized by increased synthesis and decreased degradation of the extracellular matrix (ECM). Transglutaminase-mediated covalent cross-linking is involved in the stabilization of ECM in human liver fibrosis. Thus, TG2 inhibitors may be used to counteract the decreased degradation of the ECM. The potential of a liposome based drug delivery system for site specific delivery of the fluorescent TG2 inhibitor into the liver was investigated; results indicated that the TG2 inhibitor can be successfully integrated into liposomes and delivered to the liver, therefore demonstrating that liposomes can be employed for site-specific delivery of TG2 inhibitors into the liver and TG2 inhibitor incorporating liposomes could offer a new approach in treating liver fibrosis and its end stage disease cirrhosis.

Formato

application/pdf

Identificador

http://eprints.aston.ac.uk/13343/1/DaneshpourPhD.pdf

Daneshpour, Nooshin (2010). Local and systemic delivery of a novel group of inhibitors of transglutaminase enzyme: A potential approach for treating of catheter-related complications and liver fibrosis. PhD thesis, Aston University.

Relação

http://eprints.aston.ac.uk/13343/

Tipo

Thesis

NonPeerReviewed