969 resultados para Ordinary and partial differential equations
Resumo:
In vitro tests were carried out on the pathogenicity of nine isolates of the predatory fungi of the genus Monacrosporium (5 M. sinense isolates, 3 M. appendiculatum and 1 M. thaumasium isolate) for a phytonematode (second stage juveniles from Meloidogyne incognita, race 3), a free-living nematode (Panagrellus spp), and two gastrointestinal parasitic nematodes of cattle (infective larvae of Cooperia punctata and Haemonchus placei). A suspension containing 2,000 nematodes from each species was added to Petri dishes containing fungi and grown on 2% water-agar medium at 25oC in the dark for up to 7 days. The dishes were examined every other day for 7 days and predation-free nematodes were counted. The results showed that the free-living nematodes, Panagrellus spp, were the most susceptible (P<0.05), followed by the phytonematode M. incognita, while the controls were ³98.5% viable. However, a variable susceptibility of the nematodes to different fungi was observed. This indicates that the use of predatory fungi for the environmental control of nematodes will be limited by the multiplicity of nematodes in the environment and their differential susceptibility to fungal isolates of the same genus.
Resumo:
The objective of this thesis is to develop and generalize further the differential evolution based data classification method. For many years, evolutionary algorithms have been successfully applied to many classification tasks. Evolution algorithms are population based, stochastic search algorithms that mimic natural selection and genetics. Differential evolution is an evolutionary algorithm that has gained popularity because of its simplicity and good observed performance. In this thesis a differential evolution classifier with pool of distances is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, to determine the optimal values for all free parameters of the classifier model during the training phase of the classifier. The differential evolution classifier applies the individually optimized distance measure for each new data set to be classified is generalized to cover a pool of distances. Instead of optimizing a single distance measure for the given data set, the selection of the optimal distance measure from a predefined pool of alternative measures is attempted systematically and automatically. Furthermore, instead of only selecting the optimal distance measure from a set of alternatives, an attempt is made to optimize the values of the possible control parameters related with the selected distance measure. Specifically, a pool of alternative distance measures is first created and then the differential evolution algorithm is applied to select the optimal distance measure that yields the highest classification accuracy with the current data. After determining the optimal distance measures for the given data set together with their optimal parameters, all determined distance measures are aggregated to form a single total distance measure. The total distance measure is applied to the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; a sample belongs to the class represented by the nearest prototype vector when measured with the optimized total distance measure. During the training process the differential evolution algorithm determines the optimal class vectors, selects optimal distance metrics, and determines the optimal values for the free parameters of each selected distance measure. The results obtained with the above method confirm that the choice of distance measure is one of the most crucial factors for obtaining higher classification accuracy. The results also demonstrate that it is possible to build a classifier that is able to select the optimal distance measure for the given data set automatically and systematically. After finding optimal distance measures together with optimal parameters from the particular distance measure results are then aggregated to form a total distance, which will be used to form the deviation between the class vectors and samples and thus classify the samples. This thesis also discusses two types of aggregation operators, namely, ordered weighted averaging (OWA) based multi-distances and generalized ordered weighted averaging (GOWA). These aggregation operators were applied in this work to the aggregation of the normalized distance values. The results demonstrate that a proper combination of aggregation operator and weight generation scheme play an important role in obtaining good classification accuracy. The main outcomes of the work are the six new generalized versions of previous method called differential evolution classifier. All these DE classifier demonstrated good results in the classification tasks.
Resumo:
The partial replacement of NaCl by KCl is a promising alternative to produce a cheese with lower sodium content since KCl does not change the final quality of the cheese product. In order to assure proper salt proportions, mathematical models are employed to control the product process and simulate the multicomponent diffusion during the reduced salt cheese ripening period. The generalized Fick's Second Law is widely accepted as the primary mass transfer model within solid foods. The Finite Element Method (FEM) was used to solve the system of differential equations formed. Therefore, a NaCl and KCl multicomponent diffusion was simulated using a 20% (w/w) static brine with 70% NaCl and 30% KCl during Prato cheese (a Brazilian semi-hard cheese) salting and ripening. The theoretical results were compared with experimental data, and indicated that the deviation was 4.43% for NaCl and 4.72% for KCl validating the proposed model for the production of good quality, reduced-sodium cheeses.
Resumo:
We provide a theoretical framework to explain the empirical finding that the estimated betas are sensitive to the sampling interval even when using continuously compounded returns. We suppose that stock prices have both permanent and transitory components. The permanent component is a standard geometric Brownian motion while the transitory component is a stationary Ornstein-Uhlenbeck process. The discrete time representation of the beta depends on the sampling interval and two components labelled \"permanent and transitory betas\". We show that if no transitory component is present in stock prices, then no sampling interval effect occurs. However, the presence of a transitory component implies that the beta is an increasing (decreasing) function of the sampling interval for more (less) risky assets. In our framework, assets are labelled risky if their \"permanent beta\" is greater than their \"transitory beta\" and vice versa for less risky assets. Simulations show that our theoretical results provide good approximations for the means and standard deviations of estimated betas in small samples. Our results can be perceived as indirect evidence for the presence of a transitory component in stock prices, as proposed by Fama and French (1988) and Poterba and Summers (1988).
Resumo:
L'insuffisance cardiaque est une maladie à grande incidence dont le traitement définitif est difficile. Les pompes d'assistance ventriculaire ont été proposées comme thérapie alternative à long terme, mais la technologie est relativement jeune et selon son design, axial ou centrifuge, le dispositif favorise soit l'hémolyse, soit la stagnation de l'écoulement sanguin. Les pompes à écoulement mixte, combinant certaines propriétés des deux types, ont été proposées comme solution intermédiaire. Pour évaluer leurs performances, nous avons effectué des comparaisons numériques entre huit pompes, deux axiales, deux centrifuges, et quatre mixtes, en employant un modèle Windkessel du système cardiovasculaire avec paramètres optimisés pour l'insuffisance cardiaque résolu avec une méthode Radau IIA3, une méthode de résolution de système d'équations différentielles ordinaires L-stable appartenant à la famille des méthodes Runge-Kutta implicites. Nos résultats semblent suggérer que les pompes d'assistance mixtes ne démontrent qu'un léger avantage comparativement aux autres types en terme de performance optimale dans le cas de l'insuffisance cardiaque, mais il faudrait effectuer plus d'essais numériques avec un modèle plus complet, entre autres avec contrôles nerveux implémentés.
Resumo:
Un modèle mathématique de la propagation de la malaria en temps discret est élaboré en vue de déterminer l'influence qu'un déplacement des populations des zones rurales vers les zones urbaines aurait sur la persistance ou la diminution de l'incidence de la malaria. Ce modèle, sous la forme d'un système de quatorze équations aux différences finies, est ensuite comparé à un modèle analogue mais en temps continu, qui prend la forme d'équations différentielles ordinaires. Une étude comparative avec la littérature récente permet de déterminer les forces et les faiblesses de notre modèle.
Resumo:
Il est connu qu’une équation différentielle linéaire, x^(k+1)Y' = A(x)Y, au voisinage d’un point singulier irrégulier non-résonant est uniquement déterminée (à isomorphisme analytique près) par : (1) sa forme normale formelle, (2) sa collection de matrices de Stokes. La définition des matrices de Stokes fait appel à un ordre sur les parties réelles des valeurs propres du système, ordre qui peut être perturbé par une rotation en x. Dans ce mémoire, nous avons établi le caractère intrinsèque de cette relation : nous avons donc établi comment la nouvelle collection de matrices de Stokes obtenue après une rotation en x qui change l’ordre des parties réelles des valeurs propres dépend de la collection initiale. Pour ce faire, nous donnons un chapitre de préliminaires généraux sur la forme normale des équations différentielles ordinaires puis un chapitre sur le phénomène de Stokes pour les équations différentielles linéaires. Le troisième chapitre contient nos résultats.
Resumo:
We present a novel approach to computing the orientation moments and rheological properties of a dilute suspension of spheroids in a simple shear flow at arbitrary Peclct number based on a generalised Langevin equation method. This method differs from the diffusion equation method which is commonly used to model similar systems in that the actual equations of motion for the orientations of the individual particles are used in the computations, instead of a solution of the diffusion equation of the system. It also differs from the method of 'Brownian dynamics simulations' in that the equations used for the simulations are deterministic differential equations even in the presence of noise, and not stochastic differential equations as in Brownian dynamics simulations. One advantage of the present approach over the Fokker-Planck equation formalism is that it employs a common strategy that can be applied across a wide range of shear and diffusion parameters. Also, since deterministic differential equations are easier to simulate than stochastic differential equations, the Langevin equation method presented in this work is more efficient and less computationally intensive than Brownian dynamics simulations.We derive the Langevin equations governing the orientations of the particles in the suspension and evolve a procedure for obtaining the equation of motion for any orientation moment. A computational technique is described for simulating the orientation moments dynamically from a set of time-averaged Langevin equations, which can be used to obtain the moments when the governing equations are harder to solve analytically. The results obtained using this method are in good agreement with those available in the literature.The above computational method is also used to investigate the effect of rotational Brownian motion on the rheology of the suspension under the action of an external force field. The force field is assumed to be either constant or periodic. In the case of con- I stant external fields earlier results in the literature are reproduced, while for the case of periodic forcing certain parametric regimes corresponding to weak Brownian diffusion are identified where the rheological parameters evolve chaotically and settle onto a low dimensional attractor. The response of the system to variations in the magnitude and orientation of the force field and strength of diffusion is also analyzed through numerical experiments. It is also demonstrated that the aperiodic behaviour exhibited by the system could not have been picked up by the diffusion equation approach as presently used in the literature.The main contributions of this work include the preparation of the basic framework for applying the Langevin method to standard flow problems, quantification of rotary Brownian effects by using the new method, the paired-moment scheme for computing the moments and its use in solving an otherwise intractable problem especially in the limit of small Brownian motion where the problem becomes singular, and a demonstration of how systems governed by a Fokker-Planck equation can be explored for possible chaotic behaviour.
Resumo:
It has become clear over the last few years that many deterministic dynamical systems described by simple but nonlinear equations with only a few variables can behave in an irregular or random fashion. This phenomenon, commonly called deterministic chaos, is essentially due to the fact that we cannot deal with infinitely precise numbers. In these systems trajectories emerging from nearby initial conditions diverge exponentially as time evolves)and therefore)any small error in the initial measurement spreads with time considerably, leading to unpredictable and chaotic behaviour The thesis work is mainly centered on the asymptotic behaviour of nonlinear and nonintegrable dissipative dynamical systems. It is found that completely deterministic nonlinear differential equations describing such systems can exhibit random or chaotic behaviour. Theoretical studies on this chaotic behaviour can enhance our understanding of various phenomena such as turbulence, nonlinear electronic circuits, erratic behaviour of heart and brain, fundamental molecular reactions involving DNA, meteorological phenomena, fluctuations in the cost of materials and so on. Chaos is studied mainly under two different approaches - the nature of the onset of chaos and the statistical description of the chaotic state.
Resumo:
Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.
Resumo:
Exercises and solutions in PDF
Resumo:
Exam questions and solutions in LaTex. Diagrams for the questions are all together in the support.zip file, as .eps files
Resumo:
Exercises and solutions in PDF