1000 resultados para Optical scanners


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically show that selection of a single quantum path in high-order harmonics generation can be realized in a few-optical-cycle regime with two-color schemes. We also demonstrate, in theory as well, the generation of spectrally smooth and ultrabroad extreme ultraviolet supercontinuum in argon gas which can produce single similar to 79 as pulses with currently available ultrafast laser sources. Our finding can be beneficial for generating isolated sub-100 as extreme ultraviolet pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear and nonlinear optical absorptions considering the weak-coupling electron-LO-phonon interaction in asymmetrical semiparabolic quantum wells are theoretically investigated. The numerical results for the typical GaAs/AlxGa1-xAs material show that the factors of Al content x, the relaxation time and the photon energy have great influence on the optical absorption coefficients. Moreover, the theoretical values of the optical absorptions are more than a factor of 2-3 higher than the one in the structure without considering the electron-LO-phonon interaction by calculating. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Being able to detect a single molecule without the use of labels has been a long standing goal of bioengineers and physicists. This would simplify applications ranging from single molecular binding studies to those involving public health and security, improved drug screening, medical diagnostics, and genome sequencing. One promising technique that has the potential to detect single molecules is the microtoroid optical resonator. The main obstacle to detecting single molecules, however, is decreasing the noise level of the measurements such that a single molecule can be distinguished from background. We have used laser frequency locking in combination with balanced detection and data processing techniques to reduce the noise level of these devices and report the detection of a wide range of nanoscale objects ranging from nanoparticles with radii from 100 to 2.5 nm, to exosomes, ribosomes, and single protein molecules (mouse immunoglobulin G and human interleukin-2). We further extend the exosome results towards creating a non-invasive tumor biopsy assay. Our results, covering several orders of magnitude of particle radius (100 nm to 2 nm), agree with the `reactive' model prediction for the frequency shift of the resonator upon particle binding. In addition, we demonstrate that molecular weight may be estimated from the frequency shift through a simple formula, thus providing a basis for an ``optical mass spectrometer'' in solution. We anticipate that our results will enable many applications, including more sensitive medical diagnostics and fundamental studies of single receptor-ligand and protein-protein interactions in real time. The thesis summarizes what we have achieved thus far and shows that the goal of detecting a single molecule without the use of labels can now be realized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I of this thesis deals with 3 topics concerning the luminescence from bound multi-exciton complexes in Si. Part II presents a model for the decay of electron-hole droplets in pure and doped Ge.

Part I.

We present high resolution photoluminescence data for Si doped With Al, Ga, and In. We observe emission lines due to recombination of electron-hole pairs in bound excitons and satellite lines which have been interpreted in terms of complexes of several excitons bound to an impurity. The bound exciton luminescence in Si:Ga and Si:Al consists of three emission lines due to transitions from the ground state and two low lying excited states. In Si:Ga, we observe a second triplet of emission lines which precisely mirror the triplet due to the bound exciton. This second triplet is interpreted as due to decay of a two exciton complex into the bound exciton. The observation of the second complete triplet in Si:Ga conclusively demonstrates that more than one exciton will bind to an impurity. Similar results are found for Si:Al. The energy of the lines show that the second exciton is less tightly bound than the first in Si:Ga. Other lines are observed at lower energies. The assumption of ground state to ground-state transitions for the lower energy lines is shown to produce a complicated dependence of binding energy of the last exciton on the number of excitons in a complex. No line attributable to the decay of a two exciton complex is observed in Si:In.

We present measurements of the bound exciton lifetimes for the four common acceptors in Si and for the first two bound multi-exciton complexes in Si:Ga and Si:Al. These results are shown to be in agreement with a calculation by Osbourn and Smith of Auger transition rates for acceptor bound excitons in Si. Kinetics determine the relative populations of complexes of various sizes and work functions, at temperatures which do not allow them to thermalize with respect to one another. It is shown that kinetic limitations may make it impossible to form two-exciton complexes in Si:In from a gas of free excitons.

We present direct thermodynamic measurements of the work functions of bound multi-exciton complexes in Al, B, P and Li doped Si. We find that in general the work functions are smaller than previously believed. These data remove one obstacle to the bound multi-exciton complex picture which has been the need to explain the very large apparent work functions for the larger complexes obtained by assuming that some of the observed lines are ground-state to ground-state transitions. None of the measured work functions exceed that of the electron-hole liquid.

Part II.

A new model for the decay of electron-hole-droplets in Ge is presented. The model is based on the existence of a cloud of droplets within the crystal and incorporates exciton flow among the drops in the cloud and the diffusion of excitons away from the cloud. It is able to fit the experimental luminescence decays for pure Ge at different temperatures and pump powers while retaining physically reasonable parameters for the drops. It predicts the shrinkage of the cloud at higher temperatures which has been verified by spatially and temporally resolved infrared absorption experiments. The model also accounts for the nearly exponential decay of electron-hole-droplets in lightly doped Ge at higher temperatures.