Localization of collisionally inhomogeneous condensates in a bichromatic optical lattice


Autoria(s): Cheng, Yongshan; Adhikari, Sadhan Kumar
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

30/09/2013

20/05/2014

30/09/2013

20/05/2014

28/02/2011

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

By direct numerical simulation and variational solution of the Gross-Pitaevskii equation, we studied the stationary and dynamic characteristics of a cigar-shaped, localized, collisionally inhomogeneous Bose-Einstein condensate trapped in a one-dimensional bichromatic quasiperiodic optical-lattice potential, as used in a recent experiment on the localization of a Bose-Einstein condensate [Roati et al., Nature (London) 453, 895 (2008)]. The effective potential characterizing the spatially modulated nonlinearity is obtained. It is found that the collisional inhomogeneity has influence not only on the central region but also on the tail of the Bose-Einstein condensate. The influence depends on the sign and value of the spatially modulated nonlinearity coefficient. We also demonstrate the stability of the stationary localized state by performing a standard linear stability analysis. Where possible, the numerical results are shown to be in good agreement with the variational results.

Formato

7

Identificador

http://dx.doi.org/10.1103/PhysRevA.83.023620

Physical Review A. College Pk: Amer Physical Soc, v. 83, n. 2, p. 7, 2011.

1050-2947

http://hdl.handle.net/11449/24542

10.1103/PhysRevA.83.023620

WOS:000287795200015

WOS000287795200015.pdf

Idioma(s)

eng

Publicador

Amer Physical Soc

Relação

Physical Review A

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article