951 resultados para Operating rooms
Resumo:
OBJETIVOS: Nenhum estudo de base populacional foi realizado para mostrar o uso potencial de diagnóstico virológico do vírus rábico. O estudo realizado teve por objetivo estimar parâmetros de acurácia para o isolamento de vírus rábico em célula McCoy, como um método alternativo, e comparar com o uso da célula N2A, considerada método de referência. MÉTODOS: Foi realizado um inquérito em 120 morcegos coletados aleatoriamente, na Mata Atlântica, no Estado de São Paulo. Utilizou-se a reação de imunofluorescência para a detecção do vírus rábico isolado no cérebro desses morcegos, avaliado nos dois sistemas de cultivos celulares. Dois bancos de dados foram formados com os resultados. A análise foi feita com o programa Computer Methods for Diagnosis Tests (CMDT), utilizando a técnica de two-graph-receiver operating characteristic (TG-ROC) para obter os parâmetros de sensibilidade e especificidade, além de outros indicadores, tais como eficácia, valor preditivo positivo, valor preditivo negativo e razão de verossimilhança. RESULTADOS: A célula N2A apresentou 90% de sensibilidade e especificidade, enquanto que a célula McCoy obteve 95% para os mesmos parâmetros. Os valores foram baseados em pontos de cortes otimizados para cada uma das células. CONCLUSÕES: Observou-se que a célula McCoy permite obter estimativas de acurácia superiores aos resultados observados com a célula de N2A, representando um método alternativo eficaz no isolamento do vírus rábico.
Resumo:
In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.
Resumo:
A multilevel negotiation mechanism for operating smart grids and negotiating in electricity markets considers the advantages of virtual power player management.
Resumo:
A marcha é influenciada por um conjunto de factores que resultam da interacção e organização própria de sistemas neurais e mecânicos, entre os quais, da dinâmica músculo-esquelética, da modulação pelos centros nervosos superiores, pela modulação aferente e é, também, assumida como sendo controlada pelo Gerador de Padrão Central (GPC), que se define como um programa central baseado num circuito espinal geneticamente determinado, capaz de produzir um ritmo associado a cada marcha. Apresenta-se como objectivo deste trabalho abordar quais os modelos explicativos para o funcionamento do GPC e qual a evidência científica, que continua a ter muitas divergências.
Resumo:
Electricity market players operating in a liberalized environment require adequate decision support tools, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. This paper deals with short-term predication of day-ahead spinning reserve (SR) requirement that helps the ISO to make effective and timely decisions. Based on these forecasted information, market participants can use strategic bidding for day-ahead SR market. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
The smart grid concept is rapidly evolving in the direction of practical implementations able to bring smart grid advantages into practice. Evolution in legacy equipment and infrastructures is not sufficient to accomplish the smart grid goals as it does not consider the needs of the players operating in a complex environment which is dynamic and competitive in nature. Artificial intelligence based applications can provide solutions to these problems, supporting decentralized intelligence and decision-making. A case study illustrates the importance of Virtual Power Players (VPP) and multi-player negotiation in the context of smart grids. This case study is based on real data and aims at optimizing energy resource management, considering generation, storage and demand response.
Resumo:
Development of Dual Source Computed Tomography (Definition, Siemens Medical Solutions, Erlanger, Germany) allowed advances in temporal resolution, with the addition of a second X-ray source and an array of detectors to the TCM 64 slices. The ability to run exams on Dual Energy, allows greater differentiation of tissues, showing differences between closer attenuation coefficients. In terms of renal applications, the distinction of kidney stones and masses become one of the main advantages of the use of dual-energy technology. This article pretends to demonstrate operating principles of this equipment, as its main renal applications.
Resumo:
Adequate decision support tools are required by electricity market players operating in a liberalized environment, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services (AS) represent a good negotiation opportunity that must be considered by market players. Based on the ancillary services forecasting, market participants can use strategic bidding for day-ahead ancillary services markets. For this reason, ancillary services market simulation is being included in MASCEM, a multi-agent based electricity market simulator that can be used by market players to test and enhance their bidding strategies. The paper presents the methodology used to undertake ancillary services forecasting, based on an Artificial Neural Network (ANN) approach. ANNs are used to day-ahead prediction of non-spinning reserve (NS), regulation-up (RU), and regulation down (RD). Spinning reserve (SR) is mentioned as past work for comparative analysis. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tool must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case based on California Independent System Operator (CAISO) data concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Mestrado em Controlo e Gestão dos Negócios
Resumo:
A existência de estações de tratamentos de águas residuais (ETAR) é, nos dias de hoje, fundamental na medida em que permite, reduzir a poluição ambiental associada às águas e, também, a reutilização da água tratada para diversos fins. A constante necessidade de cumprir os limites de descargas nos meios recetores conduziu a um melhoramento nas técnicas e processos de tratamento de efluentes, nomeadamente, nos processos biológicos. O processo por lamas ativadas é um processo amplamente utilizado para a remoção de poluentes orgânicos presentes nas águas residuais, pelo que um estudo mais intensivo sobre estes tratamentos resultou na publicação de uma série de conceitos e pressupostos, através de modelos numéricos. A modelação numérica de processos de tratamento de águas residuais e a utilização de ferramentas de simulação numérica têm sido largamente utilizadas, a nível mundial, por exemplo em investigação, desenvolvimento de processos, atividade de consultoria e igualmente por entidades reguladoras, na medida em que os auxiliam no planeamento, dimensionamento e análise do comportamento de infraestruturas de tratamento. No presente trabalho, recorreu-se ao software de simulação GPS-X (versão 6.0) para implementar o esquema de tratamento da ETAR de Beirolas. O objetivo deste trabalho é verificar a aplicabilidade de modelos numéricos na simulação de unidades de tratamento de efluentes e avaliar a resposta dos diferentes modelos, assim como a influência na alteração de características das águas afluentes no comportamento dos modelos. Os resultados obtidos permitiram concluir que os modelos numéricos podem ser utilizados para prever a resposta dos sistemas biológicos e as suas perturbações. Conclui-se ainda que o comportamento, dos modelos estudados (ASM1, ASM2d, ASM3 e mantis), é semelhante, contudo deve-se referir que devido à complexidade do modelo e a falta de informação experimental sobre as características do efluente, não permitiram efetuar uma completa caracterização e calibração do caso de estudo, e toda a informação disponível sobre as características físico-químicas da água foram baseadas em estimativas de concentrações de carências de oxigénio e sólidos suspensos.
Resumo:
Os Hospitais, equipamentos de interesse público, são edifícios cujos desempenho e disponibilidade das suas instalações e equipamentos podem comprometer a prestação de cuidados de saúde, pelo que nestes estabelecimentos, a Manutenção Preventiva assume um papel relevante. Nesse sentido, pretendeu-se nesta dissertação definir uma estratégia específica que permita efectuar o planeamento da manutenção preventiva de um edifício hospitalar, enquanto infraestrutura para desenvolvimento da actividade clínica. Para tal, foi efectuada uma pesquisa bibliográfica, com a qual se identificaram conceitos de manutenção e requisitos a serem tidos em conta na manutenção de edifícios hospitalares. Foi efectuada uma caracterização genérica do objecto de manutenção, limitada no âmbito desta dissertação às principais componentes dos sistemas de construção e das instalações de águas e esgotos, que podem integrar um edifício hospitalar actual, atendendo às especificações e recomendações técnicas vigentes para este tipo de edifícios. Foram identificados os objectivos e requisitos de manutenção nestes edifícios, estabelecidos pelas condições de funcionamento pretendidas, pelos critérios de durabilidade exigidos pelo Dono de Obra, pelo nível de desempenho funcional requerido para as suas componentes e pelo grau de operacionalidade imposto nas suas diferentes unidades funcionais. Tendo em consideração que a criticidade de uma componente não depende só do contexto operacional da área funcional em se insere mas também das consequências que o seu estado de funcionamento pode acarretar para a unidade funcional. Foi exemplificada a análise dos modos de falha, sua criticidade e seus efeitos para hierarquização do risco associado nas componentes estudadas. As fichas exemplificativas dos planos de manutenção preventiva, que se apresentam no âmbito desta dissertação para algumas componentes básicas, integram acções e procedimentos que derivam de uma análise aos seus modos de falha e seus efeitos, bem como de recomendações técnicas exigências da regulamentação em vigor.
Resumo:
OBJECTIVE: To identify potential prognostic factors for neonatal mortality among newborns referred to intensive care units. METHODS: A live-birth cohort study was carried out in Goiânia, Central Brazil, from November 1999 to October 2000. Linked birth and infant death certificates were used to ascertain the cohort of live born infants. An additional active surveillance system of neonatal-based mortality was implemented. Exposure variables were collected from birth and death certificates. The outcome was survivors (n=713) and deaths (n=162) in all intensive care units in the study period. Cox's proportional hazards model was applied and a Receiver Operating Characteristic curve was used to compare the performance of statistically significant variables in the multivariable model. Adjusted mortality rates by birth weight and 5-min Apgar score were calculated for each intensive care unit. RESULTS: Low birth weight and 5-min Apgar score remained independently associated to death. Birth weight equal to 2,500g had 0.71 accuracy (95% CI: 0.65-0.77) for predicting neonatal death (sensitivity =72.2%). A wide variation in the mortality rates was found among intensive care units (9.5-48.1%) and two of them remained with significant high mortality rates even after adjusting for birth weight and 5-min Apgar score. CONCLUSIONS: This study corroborates birth weight as a sensitive screening variable in surveillance programs for neonatal death and also to target intensive care units with high mortality rates for implementing preventive actions and interventions during the delivery period.
Resumo:
Background: A common task in analyzing microarray data is to determine which genes are differentially expressed across two (or more) kind of tissue samples or samples submitted under experimental conditions. Several statistical methods have been proposed to accomplish this goal, generally based on measures of distance between classes. It is well known that biological samples are heterogeneous because of factors such as molecular subtypes or genetic background that are often unknown to the experimenter. For instance, in experiments which involve molecular classification of tumors it is important to identify significant subtypes of cancer. Bimodal or multimodal distributions often reflect the presence of subsamples mixtures. Consequently, there can be genes differentially expressed on sample subgroups which are missed if usual statistical approaches are used. In this paper we propose a new graphical tool which not only identifies genes with up and down regulations, but also genes with differential expression in different subclasses, that are usually missed if current statistical methods are used. This tool is based on two measures of distance between samples, namely the overlapping coefficient (OVL) between two densities and the area under the receiver operating characteristic (ROC) curve. The methodology proposed here was implemented in the open-source R software. Results: This method was applied to a publicly available dataset, as well as to a simulated dataset. We compared our results with the ones obtained using some of the standard methods for detecting differentially expressed genes, namely Welch t-statistic, fold change (FC), rank products (RP), average difference (AD), weighted average difference (WAD), moderated t-statistic (modT), intensity-based moderated t-statistic (ibmT), significance analysis of microarrays (samT) and area under the ROC curve (AUC). On both datasets all differentially expressed genes with bimodal or multimodal distributions were not selected by all standard selection procedures. We also compared our results with (i) area between ROC curve and rising area (ABCR) and (ii) the test for not proper ROC curves (TNRC). We found our methodology more comprehensive, because it detects both bimodal and multimodal distributions and different variances can be considered on both samples. Another advantage of our method is that we can analyze graphically the behavior of different kinds of differentially expressed genes. Conclusion: Our results indicate that the arrow plot represents a new flexible and useful tool for the analysis of gene expression profiles from microarrays.