830 resultados para Oort Cloud
Resumo:
This archive provides supporting data with forcings, data and plotting scripts for the paper P. N. Blossey, C. S. Bretherton, A. Cheng, S. Endo, T. Heus, A. Lock and J. J. van der Dussen, 2016. CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO2 quadrupling and a CMIP3-composite forcing change. J. Adv. Model. Earth Syst., Under revision.
Resumo:
Context. Recent observations of brown dwarf spectroscopic variability in the infrared infer the presence of patchy cloud cover. Aims. This paper proposes a mechanism for producing inhomogeneous cloud coverage due to the depletion of cloud particles through the Coulomb explosion of dust in atmospheric plasma regions. Charged dust grains Coulomb-explode when the electrostatic stress of the grain exceeds its mechanical tensile stress, which results in grains below a critical radius a < a Coul crit being broken up. Methods. This work outlines the criteria required for the Coulomb explosion of dust clouds in substellar atmospheres, the effect on the dust particle size distribution function, and the resulting radiative properties of the atmospheric regions. Results. Our results show that for an atmospheric plasma region with an electron temperature of Te = 10 eV (≈105 K), the critical grain radius varies from 10−7 to 10−4 cm, depending on the grains’ tensile strength. Higher critical radii up to 10−3 cm are attainable for higher electron temperatures. We find that the process produces a bimodal particle size distribution composed of stable nanoscale seed particles and dust particles with a ≥ a Coul crit , with the intervening particle sizes defining a region devoid of dust. As a result, the dust population is depleted, and the clouds become optically thin in the wavelength range 0.1–10 μm, with a characteristic peak that shifts to higher wavelengths as more sub-micrometer particles are destroyed. Conclusions. In an atmosphere populated with a distribution of plasma volumes, this will yield regions of contrasting radiative properties, thereby giving a source of inhomogeneous cloud coverage. The results presented here may also be relevant for dust in supernova remnants and protoplanetary disks.
Resumo:
Many-core systems are emerging from the need of more computational power and power efficiency. However there are many issues which still revolve around the many-core systems. These systems need specialized software before they can be fully utilized and the hardware itself may differ from the conventional computational systems. To gain efficiency from many-core system, programs need to be parallelized. In many-core systems the cores are small and less powerful than cores used in traditional computing, so running a conventional program is not an efficient option. Also in Network-on-Chip based processors the network might get congested and the cores might work at different speeds. In this thesis is, a dynamic load balancing method is proposed and tested on Intel 48-core Single-Chip Cloud Computer by parallelizing a fault simulator. The maximum speedup is difficult to obtain due to severe bottlenecks in the system. In order to exploit all the available parallelism of the Single-Chip Cloud Computer, a runtime approach capable of dynamically balancing the load during the fault simulation process is used. The proposed dynamic fault simulation approach on the Single-Chip Cloud Computer shows up to 45X speedup compared to a serial fault simulation approach. Many-core systems can draw enormous amounts of power, and if this power is not controlled properly, the system might get damaged. One way to manage power is to set power budget for the system. But if this power is drawn by just few cores of the many, these few cores get extremely hot and might get damaged. Due to increase in power density multiple thermal sensors are deployed on the chip area to provide realtime temperature feedback for thermal management techniques. Thermal sensor accuracy is extremely prone to intra-die process variation and aging phenomena. These factors lead to a situation where thermal sensor values drift from the nominal values. This necessitates efficient calibration techniques to be applied before the sensor values are used. In addition, in modern many-core systems cores have support for dynamic voltage and frequency scaling. Thermal sensors located on cores are sensitive to the core's current voltage level, meaning that dedicated calibration is needed for each voltage level. In this thesis a general-purpose software-based auto-calibration approach is also proposed for thermal sensors to calibrate thermal sensors on different range of voltages.
Resumo:
The evolution and maturation of Cloud Computing created an opportunity for the emergence of new Cloud applications. High-performance Computing, a complex problem solving class, arises as a new business consumer by taking advantage of the Cloud premises and leaving the expensive datacenter management and difficult grid development. Standing on an advanced maturing phase, today’s Cloud discarded many of its drawbacks, becoming more and more efficient and widespread. Performance enhancements, prices drops due to massification and customizable services on demand triggered an emphasized attention from other markets. HPC, regardless of being a very well established field, traditionally has a narrow frontier concerning its deployment and runs on dedicated datacenters or large grid computing. The problem with common placement is mainly the initial cost and the inability to fully use resources which not all research labs can afford. The main objective of this work was to investigate new technical solutions to allow the deployment of HPC applications on the Cloud, with particular emphasis on the private on-premise resources – the lower end of the chain which reduces costs. The work includes many experiments and analysis to identify obstacles and technology limitations. The feasibility of the objective was tested with new modeling, architecture and several applications migration. The final application integrates a simplified incorporation of both public and private Cloud resources, as well as HPC applications scheduling, deployment and management. It uses a well-defined user role strategy, based on federated authentication and a seamless procedure to daily usage with balanced low cost and performance.
Resumo:
Avec l’avènement des objets connectés, la bande passante nécessaire dépasse la capacité des interconnections électriques et interface sans fils dans les réseaux d’accès mais aussi dans les réseaux coeurs. Des systèmes photoniques haute capacité situés dans les réseaux d’accès utilisant la technologie radio sur fibre systèmes ont été proposés comme solution dans les réseaux sans fil de 5e générations. Afin de maximiser l’utilisation des ressources des serveurs et des ressources réseau, le cloud computing et des services de stockage sont en cours de déploiement. De cette manière, les ressources centralisées pourraient être diffusées de façon dynamique comme l’utilisateur final le souhaite. Chaque échange nécessitant une synchronisation entre le serveur et son infrastructure, une couche physique optique permet au cloud de supporter la virtualisation des réseaux et de les définir de façon logicielle. Les amplificateurs à semi-conducteurs réflectifs (RSOA) sont une technologie clé au niveau des ONU(unité de communications optiques) dans les réseaux d’accès passif (PON) à fibres. Nous examinons ici la possibilité d’utiliser un RSOA et la technologie radio sur fibre pour transporter des signaux sans fil ainsi qu’un signal numérique sur un PON. La radio sur fibres peut être facilement réalisée grâce à l’insensibilité a la longueur d’onde du RSOA. Le choix de la longueur d’onde pour la couche physique est cependant choisi dans les couches 2/3 du modèle OSI. Les interactions entre la couche physique et la commutation de réseaux peuvent être faites par l’ajout d’un contrôleur SDN pour inclure des gestionnaires de couches optiques. La virtualisation réseau pourrait ainsi bénéficier d’une couche optique flexible grâce des ressources réseau dynamique et adaptée. Dans ce mémoire, nous étudions un système disposant d’une couche physique optique basé sur un RSOA. Celle-ci nous permet de façon simultanée un envoi de signaux sans fil et le transport de signaux numérique au format modulation tout ou rien (OOK) dans un système WDM(multiplexage en longueur d’onde)-PON. Le RSOA a été caractérisé pour montrer sa capacité à gérer une plage dynamique élevée du signal sans fil analogique. Ensuite, les signaux RF et IF du système de fibres sont comparés avec ses avantages et ses inconvénients. Finalement, nous réalisons de façon expérimentale une liaison point à point WDM utilisant la transmission en duplex intégral d’un signal wifi analogique ainsi qu’un signal descendant au format OOK. En introduisant deux mélangeurs RF dans la liaison montante, nous avons résolu le problème d’incompatibilité avec le système sans fil basé sur le TDD (multiplexage en temps duplexé).
Resumo:
Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.
Resumo:
Elasticity is one of the most known capabilities related to cloud computing, being largely deployed reactively using thresholds. In this way, maximum and minimum limits are used to drive resource allocation and deallocation actions, leading to the following problem statements: How can cloud users set the threshold values to enable elasticity in their cloud applications? And what is the impact of the applications load pattern in the elasticity? This article tries to answer these questions for iterative high performance computing applications, showing the impact of both thresholds and load patterns on application performance and resource consumption. To accomplish this, we developed a reactive and PaaS-based elasticity model called AutoElastic and employed it over a private cloud to execute a numerical integration application. Here, we are presenting an analysis of best practices and possible optimizations regarding the elasticity and HPC pair. Considering the results, we observed that the maximum threshold influences the application time more than the minimum one. We concluded that threshold values close to 100% of CPU load are directly related to a weaker reactivity, postponing resource reconfiguration when its activation in advance could be pertinent for reducing the application runtime.
Resumo:
In this thesis, tool support is addressed for the combined disciplines of Model-based testing and performance testing. Model-based testing (MBT) utilizes abstract behavioral models to automate test generation, thus decreasing time and cost of test creation. MBT is a functional testing technique, thereby focusing on output, behavior, and functionality. Performance testing, however, is non-functional and is concerned with responsiveness and stability under various load conditions. MBPeT (Model-Based Performance evaluation Tool) is one such tool which utilizes probabilistic models, representing dynamic real-world user behavior patterns, to generate synthetic workload against a System Under Test and in turn carry out performance analysis based on key performance indicators (KPI). Developed at Åbo Akademi University, the MBPeT tool is currently comprised of a downloadable command-line based tool as well as a graphical user interface. The goal of this thesis project is two-fold: 1) to extend the existing MBPeT tool by deploying it as a web-based application, thereby removing the requirement of local installation, and 2) to design a user interface for this web application which will add new user interaction paradigms to the existing feature set of the tool. All phases of the MBPeT process will be realized via this single web deployment location including probabilistic model creation, test configurations, test session execution against a SUT with real-time monitoring of user configurable metric, and final test report generation and display. This web application (MBPeT Dashboard) is implemented with the Java programming language on top of the Vaadin framework for rich internet application development. The Vaadin framework handles the complicated web communications processes and front-end technologies, freeing developers to implement the business logic as well as the user interface in pure Java. A number of experiments are run in a case study environment to validate the functionality of the newly developed Dashboard application as well as the scalability of the solution implemented in handling multiple concurrent users. The results support a successful solution with regards to the functional and performance criteria defined, while improvements and optimizations are suggested to increase both of these factors.
Resumo:
This thesis presents an analysis of the largest catalog to date of infrared spectra of massive young stellar objects in the Large Magellanic Cloud. Evidenced by their very different spectral features, the luminous objects span a range of evolutionary states from those most embedded in their natal molecular material to those that have dissipated and ionized their surroundings to form compact HII regions and photodissociation regions. We quantify the contributions of the various spectral features using the statistical method of principal component analysis. Using this analysis, we classify the YSO spectra into several distinct groups based upon their dominant spectral features: silicate absorption (S Group), silicate absorption and fine-structure line emission (SE), polycyclic aromatic hydrocarbon (PAH) emission (P Group), PAH and fine-structure line emission (PE), and only fine-structure line emission (E). Based upon the relative numbers of sources in each category, we are able to estimate the amount of time massive YSOs spend in each evolutionary stage. We find that approximately 50% of the sources have ionic fine-structure lines, indicating that a compact HII region forms about half-way through the YSO lifetime probed in our study. Of the 277 YSOs we collected spectra for, 41 have ice absorption features, indicating they are surrounded by cold ice-bearing dust particles. We have decomposed the shape of the ice features to probe the composition and thermal history of the ice. We find that most the CO2 ice is embedded a polar ice matrix that has been thermally processed by the embedded YSO. The amount of thermal processing may be correlated with the luminosity of the YSO. Using the Australia Telescope Compact Array, we imaged the dense gas around a subsample of our sources in the HII complexes N44, N105, N113, and N159 using HCO+ and HCN as dense gas tracers. We find that the molecular material in star forming environments is highly clumpy, with clumps that range from subparsec to ~2 parsecs in size and with masses between 10^2 to 10^4 solar masses. We find that there are varying levels of star formation in the clumps, with the lower-mass clumps tending to be without massive YSOs. These YSO-less clumps could either represent an earlier stage of clump to the more massive YSO-bearing ones or clumps that will never form a massive star. Clumps with massive YSOs at their centers have masses larger than those with massive YSOs at their edges, and we suggest that the difference is evolutionary: edge YSO clumps are more advanced than those with YSOs at their centers. Clumps with YSOs at their edges may have had a significant fraction of their mass disrupted or destroyed by the forming massive star. We find that the strength of the silicate absorption seen in YSO IR spectra feature is well-correlated with the on-source HCO+ and HCN flux densities, such that the strength of the feature is indicative of the embeddedness of the YSO. We estimate that ~40% of the entire spectral sample has strong silicate absorption features, implying that the YSOs are embedded in circumstellar material for about 40% of the time probed in our study.
Resumo:
Aim of the study: To introduce and describe FlorNExT®, a free cloud computing application to estimate growth and yield of maritime pine (Pinus pinaster Ait.) even-aged stands in the Northeast of Portugal (NE Portugal). Area of study: NE Portugal. Material and methods: FlorNExT® implements a dynamic growth and yield modelling framework which integrates transition functions for dominant height (site index curves) and basal area, as well as output functions for tree and stand volume, biomass, and carbon content. Main results: FlorNExT® is freely available from any device with an Internet connection at: http://flornext.esa.ipb.pt/. Research highlights: This application has been designed to make it possible for any stakeholder to easily estimate standing volume, biomass, and carbon content in maritime pine stands from stand data, as well as to estimate growth and yield based on four stand variables: age, density, dominant height, and basal area. FlorNExT® allows planning thinning treatments. FlorNExT® is a fundamental tool to support forest mobilization at local and regional scales in NE Portugal. Material and methods: FlorNExT® implements a dynamic growth and yield modelling framework which integrates transition functions for dominant height (site index curves) and basal area, as well as output functions for tree and stand volume, biomass, and carbon content. Main results: FlorNExT® is freely available from any device with an Internet connection at: http://flornext.esa.ipb.pt/. Research highlights: This application has been designed to make it possible for any stakeholder to easily estimate standing volume, biomass, and carbon content in maritime pine stands from stand data, as well as to estimate growth and yield based on four stand variables: age, density, dominant height, and basal area. FlorNExT® allows planning thinning treatments. FlorNExT® is a fundamental tool to support forest mobilization at local and regional scales in NE Portugal.
Resumo:
Dissertação apresentada ao Instituto Politécnico de Castelo Branco para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Desenvolvimento de Software e Sistemas Interativos, realizada sob a orientação científica do Doutor Fernando Reinaldo Silva Garcia Ribeiro e do Doutor José Carlos Meireles Monteiro Metrôlho, Professores Adjuntos da Unidade Técnico-Científica de Informática da Escola Superior de Tecnologia do Instituto Politécnico de Castelo Branco.