940 resultados para ORGANIC-INORGANIC HYBRID COMPOSITES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper traces the significance of the diagnosis of ‘moral insanity’ (and the related the diagnoses of ‘monomania’ and ‘manie sans delire’) to the development of psychiatry as a profession in the 19th century. The pioneers of psychiatric thought were motivated to explore such diagnoses because they promised public recognition in the high status surroundings of the criminal court. Some success was achieved in presenting a form of expertise that centred on the ability of the experts to detect quite subtle, ‘psychological’ forms of dangerous madness within the minds of offenders in France and more extensively in England. Significant backlash in the press against these new ideas pushed the profession away from such psychological exploration and back towards its medical roots that located criminal insanity simply within the organic constitution of its sufferers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid halide perovskites have emerged as promising active constituents of next generation solution processable optoelectronic devices. During their assembling process, perovskite components undergo very complex dynamic equilibria starting in solution and progressing throughout film formation. Finding a methodology to control and affect these equilibria, responsible for the unique morphological diversity observed in perovskite films, constitutes a fundamental step towards a reproducible material processability. Here we propose the exploitation of polymer matrices as cooperative assembling components of novel perovskite CH3NH3PbI3 : polymer composites, in which the control of the chemical interactions in solution allows a predictable tuning of the final film morphology. We reveal that the nature of the interactions between perovskite precursors and polymer functional groups, probed by Nuclear Magnetic Resonance (NMR) spectroscopy and Dynamic Light Scattering (DLS) techniques, allows the control of aggregates in solution whose characteristics are strictly maintained in the solid film, and permits the formation of nanostructures that are inaccessible to conventional perovskite depositions. These results demonstrate how the fundamental chemistry of perovskite precursors in solution has a paramount influence on controlling and monitoring the final morphology of CH3NH3PbI3 (MAPbI3) thin films, foreseeing the possibility of designing perovskite : polymer composites targeting diverse optoelectronic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this dissertation was to investigate flexible polymer-nanoparticle composites with unique magnetic and electrical properties. Toward this goal, two distinct projects were carried out. The first project explored the magneto-dielectric properties and morphology of flexible polymer-nanoparticle composites that possess high permeability (µ), high permittivity (ε) and minimal dielectric, and magnetic loss (tan δε, tan δµ). The main materials challenges were the synthesis of magnetic nanoparticle fillers displaying high saturation magnetization (Ms), limited coercivity, and their homogeneous dispersion in a polymeric matrix. Nanostructured magnetic fillers including polycrystalline iron core-shell nanoparticles, and constructively assembled superparamagnetic iron oxide nanoparticles were synthesized, and dispersed uniformly in an elastomer matrix to minimize conductive losses. The resulting composites have demonstrated promising permittivity (22.3), permeability (3), and sustained low dielectric (0.1), magnetic (0.4) loss for frequencies below 2 GHz. This study demonstrated nanocomposites with tunable magnetic resonance frequency, which can be used to develop compact and flexible radio frequency devices with high efficiency. The second project focused on fundamental research regarding methods for the design of highly conductive polymer-nanoparticle composites that can maintain high electrical conductivity under tensile strain exceeding 100%. We investigated a simple solution spraying method to fabricate stretchable conductors based on elastomeric block copolymer fibers and silver nanoparticles. Silver nanoparticles were assembled both in and around block copolymer fibers forming interconnected dual nanoparticle networks, resulting in both in-fiber conductive pathways and additional conductive pathways on the outer surface of the fibers. Stretchable composites with conductivity values reaching 9000 S/cm maintained 56% of their initial conductivity after 500 cycles at 100% strain. The developed manufacturing method in this research could pave the way towards direct deposition of flexible electronic devices on any shaped substrate. The electrical and electromechanical properties of these dual silver nanoparticle network composites make them promising materials for the future construction of stretchable circuitry for displays, solar cells, antennas, and strain and tactility sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced oxidation processes (AOPs) are modern methods using reactive hydroxyl radicals for the mineralization of organic pollutants into simple inorganic compounds, such as CO2 and H2O. Among AOPs electrochemical oxidation (EO) is a method suitable for coloured and turbid wastewaters. The degradation of pollutants occurs on electrocatalytic electrodes. The majority of electrodes contain in their structure either expensive materials (diamond and Pt-group metals) or are toxic for the environment compounds (Sb or Pb). One of the main disadvantages of electrochemical method is the polarization and contamination of electrodes due to the deposition of reaction products on their surface, which results in diminishing of the process efficiency. Ultrasound combined with the electrochemical degradation process eliminates electrode contamination because of the continuous mechanical cleaning effect produced by the formation and collapse of acoustic cavitation bubbles near to the electrode surface. Moreover, high frequency ultrasound generates hydroxyl radicals at water sonolysis. Ultrasound-assisted EO is a non-selective method for oxidation of different organic compounds with high degradation efficiencies. The aim of this research was to develop novel sustainable and cost-effective electrodes working as electrocatalysts and test their activity in electrocatalytic oxidation of organic compounds such as dyes and organic acids. Moreover, the goal of the research was to enhance the efficiency of electrocatalytic degradation processes by assisting it with ultrasound in order to eliminate the main drawbacks of a single electrochemical oxidation such as electrodes polarization and passivation. Novel Ti/Ta2O5-SnO2 electrodes were developed and found to be electrocatalytically active towards water (with 5% Ta content, 10 oxide film layers) and organic compounds oxidation (with 7.5% Ta content, 8 oxide film layers) and therefore these electrodes can be applicable in both environmental and energy fields. The synergetic effect of combined electrolysis and sonication was shown while conducting sonoelectrochemical (EO/US) degradation of methylene blue (MB) and formic acid (FA). Complete degradation of MB and FA was achieved after 45 and 120 min of EO/US process respectively in neutral media. Mineralization efficiency of FA over 95% was obtained after 2 h of degradation using high frequency ultrasound (381, 863, 1176 kHz) combined with 9.1 mA/cm2 current density. EO/US degradation of MB provided over 75% mineralization in 8 h. High degradation kinetic rates and mineralization efficiencies of model pollutants obtained in EO/US experiments provide the preconditions for further extrapolation of this treatment method to pilot scale studies with industrial wastewaters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O nitrogênio e um dos nutrientes mais demandados pelas espécies vegetais, sua presença no solo, sob formas orgânicas ou minerais disponíveis para as plantas, está vinculada à qualidade e quantidade dos resíduos vegetais aportados ao solo. O estudo teve o objetivo de avaliar a influência do cultivo do eucalipto e da acácia na composição das formas orgânicas e inorgânicas de N e, na abundância natural de 15N em um Argissolo Amarelo. Para isso, foram coletadas amostras de solo e serapilheira em monocultivos do Eucalyptus urograndis (clone do Eucalyptus urophylla S. T. Blake x Eucalyptus grandis W. Hill ex Spreng) de ciclo curto (sete anos), sistemas de cultivo de rotação com acácia ( Acacia mangium Willd.) após monocultivo de eucalipto, monocultivo de eucalipto de ciclo longo (24 anos) e mata nativa (Mata Atlântica) como condição original de solo do litoral Norte do Espírito do Santo. Foram avaliados os teores de C orgânico total, N total, N-NH4+, N-NO3-, relação C/N, fracionamento do N orgânico e abundância natural de 15N no solo e serapilheira. Das formas de N-orgânico hidrolisado, o N-amino foi a fração que apresentou maior contribuição (39%), seguida pela fração de N-não identificado (27%), da fração N-amida (18%) e N-hexosamina (15%). O povoamento de acácia promoveu menor abundância natural de 15N e maiores teores de N total e C orgânico no solo e aumentou as formas orgânicas de N-hidrolisado, quando comparado àqueles de eucalipto de ciclo curto. Isso indica o aumento de formas lábeis de N orgânico no solo para as plantas e redução da humificação da matéria orgânica do solo (MOS) de acácia. Nesse sentido, a rotação de cultivos florestais com acácia após eucalipto de ciclo curto contribuiu para o aumento de formas orgânicas no solo, importantes para a nutrição de plantas, por serem potenciais fontes de nutrientes às plantas em curto período de tempo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contemporary African agricultural policy embodies the African Green Revolution’s drive towards modernisation and commercialisation. Agroecologists have criticised this movement on ecological, social and political grounds. Northern Ghanaian fertiliser credit schemes provide a good example through which these critiques can be examined in a context where agricultural policy reflects the African Green Revolution’s ideals. This study aimed to determine the relationship of such credit schemes to farmers’ use of organic amendments, elucidate other factors related to organic amendment use, and comment on the relevance of this modernisation policy and its relationship to agroecology. A first research phase employed semi-structured key informant interviews. Qualitative data from these informed construction of a semi-structured questionnaire that was used in a survey of 205 farmers. Multistage sampling purposively identified five villages and selected farmers within who had joined government and donor-funded fertiliser credit schemes. The use of organic and inorganic amendments was compared to that of peers who had not taken part in such schemes. Quantitative data were used in binomial logistic regression, inferential and descriptive statistics. Qualitative data were content analysed. Credit group membership was associated with higher fertiliser application and yield, but had little influence on the extent of commercialisation. Farmers who applied organic amendments were 40% less likely to belong to a fertiliser credit scheme than not, indicating substitution between organic and inorganic fertilisers. Organic amendments were 40% more likely to be applied to compound farms than outfields and six times more likely to be applied by household heads than other household members. However, household heads also preferentially joined credit groups. This was part of an agroecological soil fertility management strategy. Household heads appreciated the soil moisture retention properties of organic amendments, and applied them to compound farms to reduce risk to their household food supply in a semi-arid environment. They simultaneously accessed fertiliser to enhance this household provisioning strategy. They appreciated the increased yields this achieved, yet complained that the repayment terms of credit schemes were unfair, fertiliser did not enhance yields in dry conditions and fertilisers were supplied late. Farmers’ use of credited fertiliser alongside their existing agroecological strategy is helpful to the extent that it raises yields, yet is problematic in that it conflicts with risk-reduction strategies based on organics. There is some potential for modernised and agroecological management paradigms to coexist. For fertiliser credit to play a role in this, schemes must use fairer repayment terms and involve a focus on simultaneous use of organic amendments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New constraints on isotope fractionation factors in inorganic aqueous sulfur systems based on theoretical and experimental techniques relevant to studies of the sulfur cycle in modern environments and the geologic rock record are presented in this dissertation. These include theoretical estimations of equilibrium isotope fractionation factors utilizing quantum mechanical software and a water cluster model approach for aqueous sulfur compounds that span the entire range of oxidation state for sulfur. These theoretical calculations generally reproduce the available experimental determinations from the literature and provide new constraints where no others are available. These theoretical calculations illustrate in detail the relationship between sulfur bonding environment and the mass dependence associated with equilibrium isotope exchange reactions involving all four isotopes of sulfur. I additionally highlight the effect of isomers of protonated compounds (compounds with the same chemical formula but different structure, where protons are bound to either sulfur or oxygen atoms) on isotope partitioning in the sulfite (S4+) and sulfoxylate (S2+) systems, both of which are key intermediates in oxidation-reduction processes in the sulfur cycle. I demonstrate that isomers containing the highest degree of coordination around sulfur (where protonation occurs on the sulfur atom) have a strong influence on isotopic fractionation factors, and argue that isomerization phenomenon should be considered in models of the sulfur cycle. Additionally, experimental results of the reaction rates and isotope fractionations associated with the chemical oxidation of aqueous sulfide are presented. Sulfide oxidation is a major process in the global sulfur cycle due largely to the sulfide-producing activity of anaerobic microorganisms in organic-rich marine sediments. These experiments reveal relationships between isotope fractionations and reaction rate as a function of both temperature and trace metal (ferrous iron) catalysis that I interpret in the context of the complex mechanism of sulfide oxidation. I also demonstrate that sulfide oxidation is a process associated with a mass dependence that can be described as not conforming to the mass dependence typically associated with equilibrium isotope exchange. This observation has implications for the inclusion of oxidative processes in environmental- and global-scale models of the sulfur cycle based on the mass balance of all four isotopes of sulfur. The contents of this dissertation provide key reference information on isotopic fractionation factors in aqueous sulfur systems that will have far-reaching applicability to studies of the sulfur cycle in a wide variety of natural settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A really particular and innovative metal-polymer sandwich material is Hybrix. Hybrix is a product developed and manufactured by Lamera AB, Gothenburg, Sweden. This innovative hybrid material is composed by two relatively thin metal layers if compared to the core thickness. The most used metals are aluminum and stainless steel and are separated by a core of nylon fibres oriented perpendicularly to the metal plates. The core is then completed by adhesive layers applied at the PA66-metal interface that once cured maintain the nylon fibres in position. This special material is very light and formable. Moreover Hybrix, depending on the specific metal which is used, can achieve a good corrosion resistance and it can be cut and punched easily. Hybrix architecture itself provides extremely good bending stiffness, damping properties, insulation capability, etc., which again, of course, change in magnitude depending in the metal alloy which is used, its thickness and core thickness. For these reasons nowadays it shows potential for all the applications which have the above mentioned characteristic as a requirement. Finally Hybrix can be processed with tools used in regular metal sheet industry and can be handled as solid metal sheets. In this master thesis project, pre-formed parts of Hybrix were studied and characterized. Previous work on Hybrix was focused on analyze its market potential and different adhesive to be used in the core. All the tests were carried out on flat unformed specimens. However, in order to have a complete description of this material also the effect of the forming process must be taken into account. Thus the main activities of the present master thesis are the following: Dynamic Mechanical-Thermal Analysis (DMTA) on unformed Hybrix samples of different thickness and on pre-strained Hybrix samples, pure epoxy adhesive samples analysis and finally moisture effects evaluation on Hybrix composite structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in the electric & hybrid electric vehicles and rapid developments in the electronic devices have increased the demand for high power and high energy density lithium ion batteries. Graphite (theoretical specific capacity: 372 mAh/g) used in commercial anodes cannot meet these demands. Amorphous SnO2 anodes (theoretical specific capacity: 781 mAh/g) have been proposed as alternative anode materials. But these materials have poor conductivity, undergo a large volume change during charging and discharging, large irreversible capacity loss leading to poor cycle performances. To solve the issues related to SnO2 anodes, we propose to synthesize porous SnO2 composites using electrostatic spray deposition technique. First, porous SnO2/CNT composites were fabricated and the effects of the deposition temperature (200,250, 300 oC) & CNT content (10, 20, 30, 40 wt %) on the electrochemical performance of the anodes were studied. Compared to pure SnO2 and pure CNT, the composite materials as anodes showed better discharge capacity and cyclability. 30 wt% CNT content and 250 oC deposition temperature were found to be the optimal conditions with regard to energy capacity whereas the sample with 20% CNT deposited at 250 oC exhibited good capacity retention. This can be ascribed to the porous nature of the anodes and the improvement in the conductivity by the addition of CNT. Electrochemical impedance spectroscopy studies were carried out to study in detail the change in the surface film resistance with cycling. By fitting EIS data to an equivalent circuit model, the values of the circuit components, which represent surface film resistance, were obtained. The higher the CNT content in the composite, lower the change in surface film resistance at certain voltage upon cycling. The surface resistance increased with the depth of discharge and decreased slightly at fully lithiated state. Graphene was also added to improve the performance of pure SnO2 anodes. The composites heated at 280 oC showed better energy capacity and energy density. The specific capacities of as deposited and post heat-treated samples were 534 and 737 mAh/g after 70 cycles. At the 70th cycle, the energy density of the composites at 195 °C and 280 °C were 1240 and 1760 Wh/kg, respectively, which are much higher than the commercially used graphite electrodes (37.2-74.4 Wh/kg). Both SnO2/CNTand SnO2/grapheme based composites with improved energy densities and capacities than pure SnO2 can make a significant impact on the development of new batteries for electric vehicles and portable electronics applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se presentan las propiedades eléctricas del compuesto Cu3BiS3 depositado por co-evaporación. Este es un nuevo compuesto que puede tener propiedades adecuadas para ser utilizado como capa absorbente en celdas solares. Las muestras fueron caracterizadas a través de medidas de efecto Hall y fotovoltaje superficial transiente (SPV). A través de medidas de efecto Hall se encontró que la concentración de portadores de carga n es del orden de 1016 cm-3 independiente de la relación de masas de Cu/Bi. También se encontró que la movilidad de este compuesto (μ del orden de 4 cm2V -1s-1) varía de acuerdo con los mecanismos de transporte que la gobiernan en dependencia con la temperatura. A partir de las medidas de SPV se encontró alta densidad de defectos superficiales, defectos que son pasivados al superponer una capa buffer sobre el compuesto Cu3BiS3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of polymorphism has an important role in several fields of materials science, because structural differences lead to different physico-chemical properties of the system. This PhD work was dedicated to the investigation of polymorphism in Indigo, Thioindigo and Quinacridone, as case studies among the organic pigments employed as semiconductors, and in Paracetamol, Phenytoin and Nabumetone, chosen among some commonly used API. The aim of the research was to improve the understanding on the structures of bulk crystals and thin films, adopting Raman spectroscopy as the method of choice, while resorting to other experimental techniques to complement the gathered information. Different crystalline polymorphs, in fact, may be conveniently distinguished by their Raman spectra in the region of the lattice phonons (10-150 cm-1), the frequencies of which, probing the inter-molecular interactions, are very sensitive to even slight modifications in the molecular packing. In particular, we have used Confocal Raman Microscopy, which is a powerful, yet simple, technique for the investigation of crystal polymorphism in organic and inorganic materials, being capable of monitoring physical modifications, chemical transformations and phase inhomogeneities in crystal domains at the micrometre scale. In this way, we have investigated bulk crystals and thin film samples obtained with a variety of crystal growth and deposition techniques. Pure polymorphs and samples with phase mixing were found and fully characterized. Raman spectroscopy was complemented mainly by XRD measurements for bulk crystals and by AFM, GIXD and TEM for thin films. Structures and phonons of the investigated polymorphs were computed by DFT methods, and the comparison between theoretical and experimental results was used to assess the relative stability of the polymorphs and to assist the spectroscopic investigation. The Raman measurements were thus found to be able to clarify ambiguities in the phase assignments which otherwise the other methods were unable to solve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalysis plays a vital role in modern synthetic chemistry. However, even if conventional catalysis (organo-catalysis, metal-catalysis and enzyme-catalysis) has provided outstanding results, various unconventional ways to make chemical reactions more effective appear now very promising. Computational methods can be of great help to reach a deeper comprehension of these chemical processes. The methodologies employed in this thesis are Quantum-Mechanical (QM), Molecular Mechanics (MM) and hybrid Quantum-Mechanical/Molecular Mechanics (QM/MM) methods. In this abstract the results are briefly summarised. The first unconventional catalysis investigated consists in the application of Oriented External Electric Fields (OEEFs) to SN2 and 4e-electrocyclic reactions. SN2 reactions with back-side mechanism can be catalysed or inhibited by the presence of an OEEF. Moreover, OEEFs can inhibit back-side mechanism (Walden inversion of configuration) and promote the naturally unfavoured front-side mechanism (retention of configuration). Electrocyclic ring opening reaction of 3-substituted cyclobutene molecules can occur with inward or outward mechanisms depending on the nature of substituent groups on the cyclobutene structure (torquoselectivity principle). OEEFs can catalyse the naturally favoured pathway or circumvent the torquoselectivity principle leading to different stereoisomers. The second case study is based on Carbon Nanotubes (CNTs) working as nano-reactors: the reaction of ethyl chloride with chloride anion inside CNTs was investigated. In addition to the SN2 mechanism, syn and anti-E2 reactions are possible. These reactions inside CNTs of different radii were examined with hybrid QM/MM methods, finding that these processes can be both catalysed and inhibited by the CNT diameter. The results suggest that electrostatic effects govern the activation energy variations inside CNTs. Finally, a new biochemical approach, based on the use of DNA catalyst was investigated at QM level. Deoxyribozyme 9DB1 catalyses the RNA ligation allowing the regioselective formation of the 3'-5' bond, following an addition-elimination two-step mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrins are α/β-heterodimeric transmembrane adhesion receptors that mediate cell-cell and cell-ECM interactions. Integrins are bidirectional signalling receptors that respond to external signals (“outside-in” signalling) and in parallel, transduce internal signals to the matrix (“inside-out” signalling), to regulate vital cellular functions including migration, survival, growth and differentiation. Therefore, dysregulation of these tightly regulated processes often results in uncontrolled integrin activation and abnormal tissue expression that is responsible for many diseases. Because of their important roles in physiological and pathological events, they represent a validated target for therapeutic and diagnostic purposes. The aim of the present Thesis was focused on the development of peptidic ligands for α4β1 and αvβ3 integrin subtypes, involved in inflammatory responses (leukocytes recruitment and extravasation) and cancer progression (angiogenesis, tumor growth, metastasis), respectively. Following the peptidomimetic strategy, we designed and synthesized a small library of linear and cyclic hybrid α/β-peptidomimetics based on the phenylureido-LDV scaffolds for the treatment of chronic inflammatory autoimmune diseases. In order to implement a fast and non-invasive diagnostic method for monitoring the course of the inflammatory processes, a flat glass-surface of dye-loaded Zeolite L-crystal nanoparticles was coated with bioactive α4β1-peptidomimetics to detect specific integrin-expressing cells as biomarkers of inflammatory diseases. Targeted drug delivery has been considered a promising alternative to overcome the pharmacokinetic limitations of conventional anticancer drugs. Thus, a novel Small-Molecule Drug Conjugate was synthesized by connecting the highly cytotoxic Cryptophycin to the tumor-targeting RGDfK-peptide through a protease-cleavable linker. Finally, in view to making the peptide synthesis more sustainable and greener, we developed an alternative method for peptide bonds formation employing solvent-free mechanochemistry and ultra-mild minimal solvent-grinding conditions in common, inexpensive laboratory equipment. To this purpose, standard amino acids, coupling agents and organic-green solvents were used in the presence of nanocrystalline hydroxyapatite as a reusable, bio-compatible inorganic basic catalyst.