888 resultados para Nonlinear terms
Resumo:
Background: The autonomic dysfunction stands out among the complications associated to diabetes mellitus (DM) and may be evaluated through the heart rate variability (HRV), a noninvasive tool to investigate the autonomic nervous system that provides information of health impairments and may be analyzed by using linear and nonlinear methods. Several studies have shown that HRV measured in a linear form is altered in DM. Nevertheless, a few studies investigate the nonlinear behavior of HRV. Therefore, this study aims at gathering information regarding the autonomic changes in subjects with DM identified by nonlinear analysis of HRV.Methods: For that, searches were performed on Medline, SciELO, Lilacs and Cochrane databases using the crossing between the key-words: diabetic autonomic neuropathy, autonomic nervous system, diabetes mellitus and heart rate variability. As inclusion criteria, articles published on a period from 2000 to 2010 with DM type land type II population which assessed the autonomic nervous system by nonlinear indices HRV were considered.Results: The electronic search resulted in a total of 1873 references with the exclusion of 1623 titles and abstracts and from the 250 abstracts remaining, 8 studies were selected to the final analysis that completed the inclusion criteria.Conclusions: In general, the analysis showed that the nonlinear techniques of HRV allowed detecting autonomic changes in DM. The methods of nonlinear analysis are indicated as a possible tool to be used for early diagnosis and prognosis of autonomic dysfunction in DM.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this dissertation is the development of a general formalism to analyze the thermodynamical properties of a photon gas under the context of nonlinear electrodynamics (NLED). To this end it is obtained, through the systematic analysis of Maxwell s electromagnetism (EM) properties, the general dependence of the Lagrangian that describes this kind of theories. From this Lagrangian and in the background of classical field theory, we derive the general dispersion relation that photons must obey in terms of a background field and the NLED properties. It is important to note that, in order to achieve this result, an aproximation has been made in order to allow the separation of the total electromagnetic field into a strong background electromagnetic field and a perturbation. Once the dispersion relation is in hand, the usual Bose-Einstein statistical procedure is followed through which the thermodynamical properties, energy density and pressure relations are obtained. An important result of this work is the fact that equation of state remains identical to the one obtained under EM. Then, two examples are made where the thermodynamic properties are explicitly derived in the context of two NLED, Born-Infelds and a quadratic approximation. The choice of the first one is due to the vast appearance in literature and, the second one, because it is a first order approximation of a large class of NLED. Ultimately, both are chosen because of their simplicity. Finally, the results are compared to EM and interpreted, suggesting possible tests to verify the internal consistency of NLED and motivating further developement into the formalism s quantum case
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Generalized Bessel polynomials (GBPs) are characterized as the extremal polynomials in certain inequalities in L-2 norm of Markov type. (C) 1998 Academic Press.
Resumo:
In the last decades, the study of nonlinear one dimensional lattices has attracted much attention of the scientific community. One of these lattices is related to a simplified model for the DNA molecule, allowing to recover experimental results, such as the denaturation of DNA double helix. Inspired by this model we construct a Hamiltonian for a reflectionless potential through the Supersymmetric Quantum Mechanics formalism, SQM. Thermodynamical properties of such one dimensional lattice are evaluated aming possible biological applications.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dynamics and stability of solitons in two-dimensional (2D) Bose-Einstein condensates (BEC), with one-dimensional (1D) conservative plus dissipative nonlinear optical lattices, are investigated. In the case of focusing media (with attractive atomic systems), the collapse of the wave packet is arrested by the dissipative periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in focusing 2D media with 1D periodic nonlinearity. In the defocusing media (repulsive BEC case) with harmonic trap in one direction and nonlinear optical lattice in the other direction, the stable soliton can exist. Variational approach simulations are confirmed by full numerical results for the 2D Gross-Pitaevskii equation.
Resumo:
The Dirac eigenvalues form a subset of observables of the Euclidean gravity. The symplectic two-form in the covariant phase space could be expressed, in principle, in terms of the Dirac eigenvalues. We discuss the existence of the formal solution of the equations defining the components of the symplectic form in this framework. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
In the limit of small values of the aspect ratio parameter (or wave steepness) which measures the amplitude of a surface wave in units of its wave-length, a model equation is derived from the Euler system in infinite depth (deep water) without potential flow assumption. The resulting equation is shown to sustain periodic waves which on the one side tend to the proper linear limit at small amplitudes, on the other side possess a threshold amplitude where wave crest peaking is achieved. An explicit expression of the crest angle at wave breaking is found in terms of the wave velocity. By numerical simulations, stable soliton-like solutions (experiencing elastic interactions) propagate in a given velocities range on the edge of which they tend to the peakon solution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new version of the relaxation algorithm is proposed in order to obtain the stationary ground-state solutions of nonlinear Schrodinger-type equations, including the hyperbolic solutions. In a first example, the method is applied to the three-dimensional Gross-Pitaevskii equation, describing a condensed atomic system with attractive two-body interaction in a non-symmetrical trap, to obtain results for the unstable branch. Next, the approach is also shown to be very reliable and easy to be implemented in a non-symmetrical case that we have bifurcation, with nonlinear cubic and quintic terms. (c) 2006 Elsevier B.V. All rights reserved.