949 resultados para Nitroxide Radicals
Resumo:
Carotenoids are natural pigments which are synthesized by plants and are responsible for the bright colors of various fruits and vegetables. There are several dozen carotenoids in the foods that we eat, and most of these carotenoids have antioxidant activity. beta-carotene has been best studied since, in most countries it is the most common carotenoid in fruits and vegetables. However, in the U.S., lycopene from tomatoes now is consumed in approximately the same amount as beta-carotene. Antioxidants (including carotenoids) have been studied for their ability to prevent chronic disease, beta-carotene and others carotenoids have antioxidant properties in vitro and in animal models. Mixtures of carotenoids or associations with others antioxidants (e.g. vitamin E) can increase their activity against free radicals. The use of animals models for studying carotenoids is limited since most of the animals do not absorb or metabolize carotenoids similarly to humans.Epidemiologic studies have shown an inverse relationship between presence of various cancers and dietary carotenoids or blood carotenoid levels. However, three out of four intervention trials using high dose beta-carotene supplements did not show protective effects against cancer or cardiovascular disease. Rather, the high risk population (smokers and asbestos workers) in these intervention trials showed an increase in cancer and angina cases. It appears that carotenoids (including beta-carotene) can promote health when taken at dietary levels, but may have adverse effects when taken in high dose by subjects who smoke or who have been exposed to asbestos. It will be the task of ongoing and future studies to define the populations that can benefit from carotenoids and to define the proper doses, lengths of treatment, and whether mixtures, lather than single carotenoids (e.g. beta-carotene) are more advantageous.
Resumo:
The applicability of the nitrobenzoyl group [NO2C6H4CO-] to protecting the functional hydroxyl group was investigated through study of the electrochemical behaviour of the butyl 4-, 3- and 2-nitrobenzoate compounds. These isomers are reduced in two cathodic steps. The first, at potentials of ca. -0.9 V vs. SCE, is attributed to the formation of rather stable anion radicals, involving one-electron transfer. The second, at potentials of ca. -1.7 V vs. SCE, occurs with a two-electron transfer in an ECE process, in which the dianion produced undergoes scission of the C-O bond giving n-butanoate ions with high yields (similar to 80%)
Resumo:
The aim of the present work was to compare colonic mucosa and plasmatic oxidative stress measured concomitantly and with different degrees of injury in rats with colitis induced by trinitrobenzene sulfonic acid. Three groups were studied: control group, colitis group, and colitis exacerbated by diclofenac. Enzymatic markers of colon injury showed enhanced activity in both groups with colitis. The colitis group treated with diclofenac presented higher colonic damage score than the other groups. In both groups with colitis, higher values of tert butyl hydroperoxide-initiated-chemiluminescence and thiobarbituric acid-reactive substances in tissue and decreased total radical-trapping antioxidant potential (TRAP) levels in plasma were found. In conclusion, independently of the degree of colonic mucosa injury and inflammation, oxidative stress in tissue occurs as a consequence of pro-oxidants increase, and is not explained by a reduction of antioxidant defenses. In both conditions, TRAP determination decreases in plasma, but not in tissue.
Resumo:
Dimorphandra mollis: An Alternative as a Source of Flavonoids with Antioxidant Action. Dimorphandra molls fruits are rich in flavonoids rutin and quercetin, which are compounds with high antioxidant activity and can be used to prevent diseases caused by free radicals. The aim of this study was to obtain an extract rich in flavonoids from fruits of D. mollis. The extract was analyzed using the methods of determination by spectrophotometry and high performance liquid chromatography. The presence of rutin and quercetin was identified in the extract, which showed a total flavonoids content of 33.71 To. The extract also showed antioxidant activity as scanvanger of DPPH and ABTS radicals. It was possible to conclude that D. mollis fruits are a rich source of flavonoids with antioxidant action.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Changes in activities of Cu-Zn superoxide dismutase (SOD- E.C.1.15.1.1.) and lactate dehydrogenase (LDH- E.C.1.1.1.27.) and levels of copper, total protein, triglycerides, phospholipids and total lipids were investigated in pancreas of rats after intratracheal administration of NiCl2 (8.4 mumol/kg). Nickel chloride induced increased SOD activity in pancreas and erythrocytes. This elevation was related to increased copper and decreased phospholipid content in pancreas of these animals. In conclusion, the ability of an animal to tolerate nickel chloride induced damage was governed by a delicate balance between the generation of cytotoxic agents and the various pancreas defense capabilities.
Resumo:
The antimalarial properties of azomethine H represent the basis for its use as a chemotherapeutic agent. This work was carried out in order to verify the biological side effects of azomethine H and to clarify the contribution of reactive oxygen species (ROS) in this process. It was shown that azomethine H increased serum activities of amylase, alanine transaminase (ALT) and the TEARS concentrations, in rats. No changes were observed in glutathione peroxidase and catalase activities. The drug-induced tissue damage might be due to superoxide radicals (O-2(.-)), since Cu-Zn superoxide dismutase activities were increased by azomethine I-I treatment. This study allows tentative conclusions to be drawn regarding which reactive oxygen metabolites play a role in azomethine H activity. We concluded that (O-2(.-)) maybe produced as a mediator of azomethine H action.
Resumo:
Background: Splanchnic artery occlusion shock is caused by increased capillary permeability and cellular injury precipitated by oxygen derived free radicals following ischemia and reperfusion of splanchnic organs. The purpose of this study was to assess the role of several well-known oxygen- derived free radical scavengers in ameliorating or preventing this syndrome. Study design: Anesthetized rats were subjected to periods of occlusion of the visceral arteries and reperfusion. Tocopherol, taurine, selenium or a 'cocktail' of these three agents was injected subcutaneously for 4 consecutive days prior to operation. Mean arterial blood pressure was measured throughout the experimental period. Fluorometry and technetium-99m pyrophosphate counting of the visceral organs were performed as well as a histologic grading system for intestinal viability. Results: Final mean arterial blood pressure associated with the 'cocktail' and selenium groups was 79.1 ± 27.4 mmHg and 83.6 ± 17.8 mmHg, respectively. These values were significantly higher than the control group, 40.8 ± 11.4 mmHg (P < 0.05). Similar patterns of the benefit of selenium in contrast with the other groups were obtained with fluorescein perfusion, radioisotopic activity and histologic analysis. Conclusion: Pretreatment with selenium of splanchnic ischemia and reperfusion in the rat improves mean arterial blood pressure and microcirculatory visceral perfusion. Further analysis of the precise protective mechanism of selenium for reperfusion injury will enable visceral organs to withstand the consequences of increased capillary leakage and oxidant injury.
Resumo:
Pollution and industrial practices result in concentrations of metals and other environmental agents that are related to environmental toxicity. Concentrations of metals are widely related to biochemicals values which are used in disease diagnosis due to environmental toxicity. This work was carried out in order to verify the nephrotoxic effect of cadmium and to clarify the contribution of reactive oxygen species (ROS) in this process. Cadmium chloride was tested for nephrotoxic damage in rats by a single intraperitoneal (i.p.) injection Cd 2+ (2 mg/kg) and oral intake (Cd2 +-100 mg/l-from CdCl 2). The cadmium-induced biochemical alterations included significant increased levels of serum creatinine concentrations, in rats with i.p. injection. Total urinary protein concentrations were only increased in rats with cadmium intake. Lipoperoxide was also increased after 3 and 7 days of the Cd 2+ treatment. No changes were observed in glutathione peroxidase activities. Cadmium-induced damage might be due to superoxide radicals (O 2 -), since Cu-Zn superoxide dismutase activities were decreased by Cd 2+ treatment. This study allows tentative conclusions to be drawn regarding which reactive oxygen metabolites play a role in cadmium nephrotoxicity. We concluded that the superoxide radical may be produced as a mediator of nephrotoxic action of cadmium.
Resumo:
Carotenoids are natural pigments which are synthesized by plants and are responsible for the bright colors of various fruits and vegetables. There are several dozen carotenoids in the foods that we eat, and most of these carotenoids have antioxidant activity. β-carotene has been best studied since, in most countries it is the most common carotenoid in fruits and vegetables. However, in the U.S., lycopene from tomatoes now is consumed in approximately the same amount as β-carotene. Antioxidants (including carotenoids) have been studied for their ability to prevent chronic disease. β-carotene and others carotenoids have antioxidant properties in vitro and in animal models. Mixtures of carotenoids or associations with others antioxidants (e.g. vitamin E) can increase their activity against free radicals. The use of animals models for studying carotenoids is limited since most of the animals do not absorb or metabolize carotenoids similarly to humans. Epidemiologic studies have shown an inverse relationship between presence of various cancers and dietary carotenoids or blood carotenoid levels. However, three out of four intervention trials using high dose β- carotene supplements did not show protective effects against cancer or cardiovascular disease. Rather, the high risk population (smokers and asbestos workers) in these intervention trials showed an increase in cancer and angina cases. It appears that carotenoids (including β-carotene) can promote health when taken at dietary levels, but may have adverse effects when taken in high dose by subjects who smoke or who have been exposed to asbestos. It will be the task of ongoing and future studies to define the populations that can benefit from carotenoids and to define the proper doses, lengths of treatment, and whether mixtures, rather than single carotenoids (e.g. β-carotene) are more advantageous.
Resumo:
Atherosclerosis is a very common and important disease being the most important cause of mortality in Brazil. Indeed, in 1995, 23.3% of deaths, all ages, in our country, were the consequence of atherosclerosis. This percentage grows to 26.3% for S. Paulo and 32.7% for Rio Grande do Sul. Morphologically, there are 3 main types of lesions: fatty streaks, fibrous plaques, and complicated lesions. Fatty streaks are inocuous and occur early in life. In some persons, with age, they change into fibrous plaques that may lead to stenosis. They also may become complicated by erosion, calcification, hemorrhage and thrombosis. Atherosclerosis is initiated by endothelial functional alterations responsible for increase in permeability to macromolecules, adhesion, and migration of monocytes-macrophages and lymphocytes plus recruitment of platelets and smooth-muscle medial cells. Adhesion molecules, cytokines, growth factors, and free radicals are locally synthesized, favoring proliferation of extracellular matrix and progression of the lesion. Experimental, clinical, and epidemiological evidence point to the importance of lipids, mainly cholesterol-rich low-density lipoprotein (LDL), as one of the most important molecules involved in the genesis and progression of atherosclerosis. Patients with a genetic disorder of cholesterol metabolism (familial hyperlipidemia), caused by a decrease in the availability of receptors for LDL, develop severe atherosclerosis early in life. A series of other factors, such as age, diabetes melitus, diet, hypertension, lack of exercise, elevated hemocysteinemia, immunological disorders, and coagulation instability, are related to the progression of atherosclerosis. All of them are capable of altering the endothelium or increasing the offer of LDL. All the above-mentioned factors are systemic; but atherosclerosic lesions are focal, located at preferential sites such as the emergence of colaterals, bifurcations, and curvatures of arteries, all areas in which the laminar flow is disturbed. In these areas shear stress is diminished favoring the prolongation of permanence time of lipid particles, cells, cytokines, growth factors, etc., in the vicinity of the endothelium. Moreover, the endothelium has sensors that act as transducers of mechanical forces in biological responses. Experimental data demonstrate that the number and quality of adhesion molecules, cytokines, and growth factors synthetized, as well as the local production of radicals, and pro and anticoagulation factors may change with shear stress favoring or not the local establishment and progression of atherosclerotic lesions.