992 resultados para Neumann Problem
Resumo:
The aim of this paper is to demonstrate that, even if Marx's solution to the transformation problem can be modified, his basic concusions remain valid.
Resumo:
The aim of this paper is to demonstrate that, even if Marx's solution to the transformation problem can be modified, his basic conclusions remain valid. the proposed alternative solution which is presented hare is based on the constraint of a common general profit rate in both spaces and a money wage level which will be determined simultaneously with prices.
Resumo:
In this article we study the effect of uncertainty on an entrepreneur who must choose the capacity of his business before knowing the demand for his product. The unit profit of operation is known with certainty but there is no flexibility in our one-period framework. We show how the introduction of global uncertainty reduces the investment of the risk neutral entrepreneur and, even more, that the risk averse one. We also show how marginal increases in risk reduce the optimal capacity of both the risk neutral and the risk averse entrepreneur, without any restriction on the concave utility function and with limited restrictions on the definition of a mean preserving spread. These general results are explained by the fact that the newsboy has a piecewise-linear, and concave, monetary payoff witha kink endogenously determined at the level of optimal capacity. Our results are compared with those in the two literatures on price uncertainty and demand uncertainty, and particularly, with the recent contributions of Eeckhoudt, Gollier and Schlesinger (1991, 1995).
Resumo:
Dossier : In Memoriam, Iris Marion Young (1949-2006)
Resumo:
We reconsider the problem of aggregating individual preference orderings into a single social ordering when alternatives are lotteries and individual preferences are of the von Neumann-Morgenstern type. Relative egalitarianism ranks alternatives by applying the leximin ordering to the distributions of (0-1) normalized utilities they generate. We propose an axiomatic characterization of this aggregation rule and discuss related criteria.
Resumo:
Cet article discute des problèmes de gouvernance et de corruption en Afrique dans le cadre d’un débat politique et philosophique large entre universalisme et relativisme, idéalisme et réalisme, ainsi que entre individualisme et communautarisme. Premièrement, je défends que l’approche réaliste de l’éthique politique et du leadership ne permet pas de différencier entre les éléments descriptifs et prescriptifs de la gouvernance et peut aisément être utilisée pour justifier « les Mains Sales » des dirigeants au nom de l’intérêt supérieur de la nation, même dans les cas où l’intérêt personnel est la seule force motivationnelle pour les actions qui sapent les codes sociaux et éthiques ordinaires. Deuxièmement, l’article montre la faillite de la confiance publique dans le gouvernement et la faiblesse de l’Etat renforce les politiques communautariennes sub-nationales qui tendent à être fondées sur l’ethnie et exclusive, et par conséquent, qui viole le cœur de l’éthique publique, c’est-à-dire l’impartialité. Finalement, l’article suggère que les principes d’éthique universels pour les services publiques soient introduits en complément plutôt qu’en concurrence avec les éthiques locales, socialement et culturellement limitée au privé. Cela requière, d’une part, que nous comprenions mieux la complexité historique, les circonstances économiques et sociales et les arrangements politiques transitionnels dans les pays africains. D’autre part, un nous devons investir dans une éducation éthique civique et professionnel réflexive qui adopte un point de vue nuancé entre le réalisme politique et l’idéalisme comme point de départ des réformes institutionnelles, aussi bien que modalité de changement des comportements à long terme.
Resumo:
Dans ce mémoire, je démontre que la distribution de probabilités de l'état quantique Greenberger-Horne-Zeilinger (GHZ) sous l'action locale de mesures de von Neumann indépendantes sur chaque qubit suit une distribution qui est une combinaison convexe de deux distributions. Les coefficients de la combinaison sont reliés aux parties équatoriales des mesures et les distributions associées à ces coefficients sont reliées aux parties réelles des mesures. Une application possible du résultat est qu'il permet de scinder en deux la simulation de l'état GHZ. Simuler, en pire cas ou en moyenne, un état quantique comme GHZ avec des ressources aléatoires, partagées ou privées, et des ressources classiques de communication, ou même des ressources fantaisistes comme les boîtes non locales, est un problème important en complexité de la communication quantique. On peut penser à ce problème de simulation comme un problème où plusieurs personnes obtiennent chacune une mesure de von Neumann à appliquer sur le sous-système de l'état GHZ qu'il partage avec les autres personnes. Chaque personne ne connaît que les données décrivant sa mesure et d'aucune façon une personne ne connaît les données décrivant la mesure d'une autre personne. Chaque personne obtient un résultat aléatoire classique. La distribution conjointe de ces résultats aléatoires classiques suit la distribution de probabilités trouvée dans ce mémoire. Le but est de simuler classiquement la distribution de probabilités de l'état GHZ. Mon résultat indique une marche à suivre qui consiste d'abord à simuler les parties équatoriales des mesures pour pouvoir ensuite savoir laquelle des distributions associées aux parties réelles des mesures il faut simuler. D'autres chercheurs ont trouvé comment simuler les parties équatoriales des mesures de von Neumann avec de la communication classique dans le cas de 3 personnes, mais la simulation des parties réelles résiste encore et toujours.
Resumo:
Le problème de localisation-routage avec capacités (PLRC) apparaît comme un problème clé dans la conception de réseaux de distribution de marchandises. Il généralisele problème de localisation avec capacités (PLC) ainsi que le problème de tournées de véhicules à multiples dépôts (PTVMD), le premier en ajoutant des décisions liées au routage et le deuxième en ajoutant des décisions liées à la localisation des dépôts. Dans cette thèse on dévelope des outils pour résoudre le PLRC à l’aide de la programmation mathématique. Dans le chapitre 3, on introduit trois nouveaux modèles pour le PLRC basés sur des flots de véhicules et des flots de commodités, et on montre comment ceux-ci dominent, en termes de la qualité de la borne inférieure, la formulation originale à deux indices [19]. Des nouvelles inégalités valides ont été dévelopées et ajoutées aux modèles, de même que des inégalités connues. De nouveaux algorithmes de séparation ont aussi été dévelopés qui dans la plupart de cas généralisent ceux trouvés dans la litterature. Les résultats numériques montrent que ces modèles de flot sont en fait utiles pour résoudre des instances de petite à moyenne taille. Dans le chapitre 4, on présente une nouvelle méthode de génération de colonnes basée sur une formulation de partition d’ensemble. Le sous-problème consiste en un problème de plus court chemin avec capacités (PCCC). En particulier, on utilise une relaxation de ce problème dans laquelle il est possible de produire des routes avec des cycles de longueur trois ou plus. Ceci est complété par des nouvelles coupes qui permettent de réduire encore davantage le saut d’intégralité en même temps que de défavoriser l’apparition de cycles dans les routes. Ces résultats suggèrent que cette méthode fournit la meilleure méthode exacte pour le PLRC. Dans le chapitre 5, on introduit une nouvelle méthode heuristique pour le PLRC. Premièrement, on démarre une méthode randomisée de type GRASP pour trouver un premier ensemble de solutions de bonne qualité. Les solutions de cet ensemble sont alors combinées de façon à les améliorer. Finalement, on démarre une méthode de type détruir et réparer basée sur la résolution d’un nouveau modèle de localisation et réaffectation qui généralise le problème de réaffectaction [48].
Resumo:
Dans cette thèse, nous présentons une nouvelle méthode smoothed particle hydrodynamics (SPH) pour la résolution des équations de Navier-Stokes incompressibles, même en présence des forces singulières. Les termes de sources singulières sont traités d'une manière similaire à celle que l'on retrouve dans la méthode Immersed Boundary (IB) de Peskin (2002) ou de la méthode régularisée de Stokeslets (Cortez, 2001). Dans notre schéma numérique, nous mettons en oeuvre une méthode de projection sans pression de second ordre inspirée de Kim et Moin (1985). Ce schéma évite complètement les difficultés qui peuvent être rencontrées avec la prescription des conditions aux frontières de Neumann sur la pression. Nous présentons deux variantes de cette approche: l'une, Lagrangienne, qui est communément utilisée et l'autre, Eulerienne, car nous considérons simplement que les particules SPH sont des points de quadrature où les propriétés du fluide sont calculées, donc, ces points peuvent être laissés fixes dans le temps. Notre méthode SPH est d'abord testée à la résolution du problème de Poiseuille bidimensionnel entre deux plaques infinies et nous effectuons une analyse détaillée de l'erreur des calculs. Pour ce problème, les résultats sont similaires autant lorsque les particules SPH sont libres de se déplacer que lorsqu'elles sont fixes. Nous traitons, par ailleurs, du problème de la dynamique d'une membrane immergée dans un fluide visqueux et incompressible avec notre méthode SPH. La membrane est représentée par une spline cubique le long de laquelle la tension présente dans la membrane est calculée et transmise au fluide environnant. Les équations de Navier-Stokes, avec une force singulière issue de la membrane sont ensuite résolues pour déterminer la vitesse du fluide dans lequel est immergée la membrane. La vitesse du fluide, ainsi obtenue, est interpolée sur l'interface, afin de déterminer son déplacement. Nous discutons des avantages à maintenir les particules SPH fixes au lieu de les laisser libres de se déplacer. Nous appliquons ensuite notre méthode SPH à la simulation des écoulements confinés des solutions de polymères non dilués avec une interaction hydrodynamique et des forces d'exclusion de volume. Le point de départ de l'algorithme est le système couplé des équations de Langevin pour les polymères et le solvant (CLEPS) (voir par exemple Oono et Freed (1981) et Öttinger et Rabin (1989)) décrivant, dans le cas présent, les dynamiques microscopiques d'une solution de polymère en écoulement avec une représentation bille-ressort des macromolécules. Des tests numériques de certains écoulements dans des canaux bidimensionnels révèlent que l'utilisation de la méthode de projection d'ordre deux couplée à des points de quadrature SPH fixes conduit à un ordre de convergence de la vitesse qui est de deux et à une convergence d'ordre sensiblement égale à deux pour la pression, pourvu que la solution soit suffisamment lisse. Dans le cas des calculs à grandes échelles pour les altères et pour les chaînes de bille-ressort, un choix approprié du nombre de particules SPH en fonction du nombre des billes N permet, en l'absence des forces d'exclusion de volume, de montrer que le coût de notre algorithme est d'ordre O(N). Enfin, nous amorçons des calculs tridimensionnels avec notre modèle SPH. Dans cette optique, nous résolvons le problème de l'écoulement de Poiseuille tridimensionnel entre deux plaques parallèles infinies et le problème de l'écoulement de Poiseuille dans une conduite rectangulaire infiniment longue. De plus, nous simulons en dimension trois des écoulements confinés entre deux plaques infinies des solutions de polymères non diluées avec une interaction hydrodynamique et des forces d'exclusion de volume.
Resumo:
Dans cette thèse, nous étudions quelques problèmes fondamentaux en mathématiques financières et actuarielles, ainsi que leurs applications. Cette thèse est constituée de trois contributions portant principalement sur la théorie de la mesure de risques, le problème de l’allocation du capital et la théorie des fluctuations. Dans le chapitre 2, nous construisons de nouvelles mesures de risque cohérentes et étudions l’allocation de capital dans le cadre de la théorie des risques collectifs. Pour ce faire, nous introduisons la famille des "mesures de risque entropique cumulatifs" (Cumulative Entropic Risk Measures). Le chapitre 3 étudie le problème du portefeuille optimal pour le Entropic Value at Risk dans le cas où les rendements sont modélisés par un processus de diffusion à sauts (Jump-Diffusion). Dans le chapitre 4, nous généralisons la notion de "statistiques naturelles de risque" (natural risk statistics) au cadre multivarié. Cette extension non-triviale produit des mesures de risque multivariées construites à partir des données financiéres et de données d’assurance. Le chapitre 5 introduit les concepts de "drawdown" et de la "vitesse d’épuisement" (speed of depletion) dans la théorie de la ruine. Nous étudions ces concepts pour des modeles de risque décrits par une famille de processus de Lévy spectrallement négatifs.
Resumo:
La thèse est divisée principalement en deux parties. La première partie regroupe les chapitres 2 et 3. La deuxième partie regroupe les chapitres 4 et 5. La première partie concerne l'échantillonnage de distributions continues non uniformes garantissant un niveau fixe de précision. Knuth et Yao démontrèrent en 1976 comment échantillonner exactement n'importe quelle distribution discrète en n'ayant recours qu'à une source de bits non biaisés indépendants et identiquement distribués. La première partie de cette thèse généralise en quelque sorte la théorie de Knuth et Yao aux distributions continues non uniformes, une fois la précision fixée. Une borne inférieure ainsi que des bornes supérieures pour des algorithmes génériques comme l'inversion et la discrétisation figurent parmi les résultats de cette première partie. De plus, une nouvelle preuve simple du résultat principal de l'article original de Knuth et Yao figure parmi les résultats de cette thèse. La deuxième partie concerne la résolution d'un problème en théorie de la complexité de la communication, un problème qui naquit avec l'avènement de l'informatique quantique. Étant donné une distribution discrète paramétrée par un vecteur réel de dimension N et un réseau de N ordinateurs ayant accès à une source de bits non biaisés indépendants et identiquement distribués où chaque ordinateur possède un et un seul des N paramètres, un protocole distribué est établi afin d'échantillonner exactement ladite distribution.
Resumo:
Le problème d'allocation de postes d'amarrage (PAPA) est l'un des principaux problèmes de décision aux terminaux portuaires qui a été largement étudié. Dans des recherches antérieures, le PAPA a été reformulé comme étant un problème de partitionnement généralisé (PPG) et résolu en utilisant un solveur standard. Les affectations (colonnes) ont été générées a priori de manière statique et fournies comme entrée au modèle %d'optimisation. Cette méthode est capable de fournir une solution optimale au problème pour des instances de tailles moyennes. Cependant, son inconvénient principal est l'explosion du nombre d'affectations avec l'augmentation de la taille du problème, qui fait en sorte que le solveur d'optimisation se trouve à court de mémoire. Dans ce mémoire, nous nous intéressons aux limites de la reformulation PPG. Nous présentons un cadre de génération de colonnes où les affectations sont générées de manière dynamique pour résoudre les grandes instances du PAPA. Nous proposons un algorithme de génération de colonnes qui peut être facilement adapté pour résoudre toutes les variantes du PAPA en se basant sur différents attributs spatiaux et temporels. Nous avons testé notre méthode sur un modèle d'allocation dans lequel les postes d'amarrage sont considérés discrets, l'arrivée des navires est dynamique et finalement les temps de manutention dépendent des postes d'amarrage où les bateaux vont être amarrés. Les résultats expérimentaux des tests sur un ensemble d'instances artificielles indiquent que la méthode proposée permet de fournir une solution optimale ou proche de l'optimalité même pour des problème de très grandes tailles en seulement quelques minutes.
Resumo:
Dans des contextes de post-urgence tels que le vit la partie occidentale de la République Démocratique du Congo (RDC), l’un des défis cruciaux auxquels font face les hôpitaux ruraux est de maintenir un niveau de médicaments essentiels dans la pharmacie. Sans ces médicaments pour traiter les maladies graves, l’impact sur la santé de la population est significatif. Les hôpitaux encourent également des pertes financières dues à la péremption lorsque trop de médicaments sont commandés. De plus, les coûts du transport des médicaments ainsi que du superviseur sont très élevés pour les hôpitaux isolés ; les coûts du transport peuvent à eux seuls dépasser ceux des médicaments. En utilisant la province du Bandundu, RDC pour une étude de cas, notre recherche tente de déterminer la faisabilité (en termes et de la complexité du problème et des économies potentielles) d’un problème de routage synchronisé pour la livraison de médicaments et pour les visites de supervision. Nous proposons une formulation du problème de tournées de véhicules avec capacité limitée qui gère plusieurs exigences nouvelles, soit la synchronisation des activités, la préséance et deux fréquences d’activités. Nous mettons en œuvre une heuristique « cluster first, route second » avec une base de données géospatiales qui permet de résoudre le problème. Nous présentons également un outil Internet qui permet de visualiser les solutions sur des cartes. Les résultats préliminaires de notre étude suggèrent qu’une solution synchronisée pourrait offrir la possibilité aux hôpitaux ruraux d’augmenter l’accessibilité des services médicaux aux populations rurales avec une augmentation modique du coût de transport actuel.
Resumo:
La présente thèse porte sur différentes questions émanant de la géométrie spectrale. Ce domaine des mathématiques fondamentales a pour objet d'établir des liens entre la géométrie et le spectre d'une variété riemannienne. Le spectre d'une variété compacte fermée M munie d'une métrique riemannienne $g$ associée à l'opérateur de Laplace-Beltrami est une suite de nombres non négatifs croissante qui tend vers l’infini. La racine carrée de ces derniers représente une fréquence de vibration de la variété. Cette thèse présente quatre articles touchant divers aspects de la géométrie spectrale. Le premier article, présenté au Chapitre 1 et intitulé « Superlevel sets and nodal extrema of Laplace eigenfunctions », porte sur la géométrie nodale d'opérateurs elliptiques. L’objectif de mes travaux a été de généraliser un résultat de L. Polterovich et de M. Sodin qui établit une borne sur la distribution des extrema nodaux sur une surface riemannienne pour une assez vaste classe de fonctions, incluant, entre autres, les fonctions propres associées à l'opérateur de Laplace-Beltrami. La preuve fournie par ces auteurs n'étant valable que pour les surfaces riemanniennes, je prouve dans ce chapitre une approche indépendante pour les fonctions propres de l’opérateur de Laplace-Beltrami dans le cas des variétés riemanniennes de dimension arbitraire. Les deuxième et troisième articles traitent d'un autre opérateur elliptique, le p-laplacien. Sa particularité réside dans le fait qu'il est non linéaire. Au Chapitre 2, l'article « Principal frequency of the p-laplacian and the inradius of Euclidean domains » se penche sur l'étude de bornes inférieures sur la première valeur propre du problème de Dirichlet du p-laplacien en termes du rayon inscrit d’un domaine euclidien. Plus particulièrement, je prouve que, si p est supérieur à la dimension du domaine, il est possible d'établir une borne inférieure sans aucune hypothèse sur la topologie de ce dernier. L'étude de telles bornes a fait l'objet de nombreux articles par des chercheurs connus, tels que W. K. Haymann, E. Lieb, R. Banuelos et T. Carroll, principalement pour le cas de l'opérateur de Laplace. L'adaptation de ce type de bornes au cas du p-laplacien est abordée dans mon troisième article, « Bounds on the Principal Frequency of the p-Laplacian », présenté au Chapitre 3 de cet ouvrage. Mon quatrième article, « Wolf-Keller theorem for Neumann Eigenvalues », est le fruit d'une collaboration avec Guillaume Roy-Fortin. Le thème central de ce travail gravite autour de l'optimisation de formes dans le contexte du problème aux valeurs limites de Neumann. Le résultat principal de cet article est que les valeurs propres de Neumann ne sont pas toujours maximisées par l'union disjointe de disques arbitraires pour les domaines planaires d'aire fixée. Le tout est présenté au Chapitre 4 de cette thèse.