883 resultados para Network security
Resumo:
The Distributed Network Protocol v3.0 (DNP3) is one of the most widely used protocols, to control national infrastructure. Widely used interactive packet manipulation tools, such as Scapy, have not yet been augmented to parse and create DNP3 frames (Biondi 2014). In this paper we extend Scapy to include DNP3, thus allowing us to perform attacks on DNP3 in real-time. Our contribution builds on East et al. (2009), who proposed a range of possible attacks on DNP3. We implement several of these attacks to validate our DNP3 extension to Scapy, then executed the attacks on real world equipment. We present our results, showing that many of these theoretical attacks would be unsuccessful in an Ethernet-based network.
Resumo:
In this paper, the security of two recent RFID mutual authentication protocols are investigated. The first protocol is a scheme proposed by Huang et al. [7] and the second one by Huang, Lin and Li [6]. We show that these two protocols have several weaknesses. In Huang et al.’s scheme, an adversary can determine the 32-bit secret password with a probability of 2−2 , and in Huang-Lin-Li scheme, a passive adversary can recognize a target tag with a success probability of 1−2−4 and an active adversary can determine all 32 bits of Access password with success probability of 2−4 . The computational complexity of these attacks is negligible.
The suffix-free-prefix-free hash function construction and its indifferentiability security analysis
Resumo:
In this paper, we observe that in the seminal work on indifferentiability analysis of iterated hash functions by Coron et al. and in subsequent works, the initial value (IV) of hash functions is fixed. In addition, these indifferentiability results do not depend on the Merkle–Damgård (MD) strengthening in the padding functionality of the hash functions. We propose a generic n -bit-iterated hash function framework based on an n -bit compression function called suffix-free-prefix-free (SFPF) that works for arbitrary IV s and does not possess MD strengthening. We formally prove that SFPF is indifferentiable from a random oracle (RO) when the compression function is viewed as a fixed input-length random oracle (FIL-RO). We show that some hash function constructions proposed in the literature fit in the SFPF framework while others that do not fit in this framework are not indifferentiable from a RO. We also show that the SFPF hash function framework with the provision of MD strengthening generalizes any n -bit-iterated hash function based on an n -bit compression function and with an n -bit chaining value that is proven indifferentiable from a RO.
Resumo:
At CRYPTO 2006, Halevi and Krawczyk proposed two randomized hash function modes and analyzed the security of digital signature algorithms based on these constructions. They showed that the security of signature schemes based on the two randomized hash function modes relies on properties similar to the second preimage resistance rather than on the collision resistance property of the hash functions. One of the randomized hash function modes was named the RMX hash function mode and was recommended for practical purposes. The National Institute of Standards and Technology (NIST), USA standardized a variant of the RMX hash function mode and published this standard in the Special Publication (SP) 800-106. In this article, we first discuss a generic online birthday existential forgery attack of Dang and Perlner on the RMX-hash-then-sign schemes. We show that a variant of this attack can be applied to forge the other randomize-hash-then-sign schemes. We point out practical limitations of the generic forgery attack on the RMX-hash-then-sign schemes. We then show that these limitations can be overcome for the RMX-hash-then-sign schemes if it is easy to find fixed points for the underlying compression functions, such as for the Davies-Meyer construction used in the popular hash functions such as MD5 designed by Rivest and the SHA family of hash functions designed by the National Security Agency (NSA), USA and published by NIST in the Federal Information Processing Standards (FIPS). We show an online birthday forgery attack on this class of signatures by using a variant of Dean’s method of finding fixed point expandable messages for hash functions based on the Davies-Meyer construction. This forgery attack is also applicable to signature schemes based on the variant of RMX standardized by NIST in SP 800-106. We discuss some important applications of our attacks and discuss their applicability on signature schemes based on hash functions with ‘built-in’ randomization. Finally, we compare our attacks on randomize-hash-then-sign schemes with the generic forgery attacks on the standard hash-based message authentication code (HMAC).
Resumo:
We present some improved analytical results as part of the ongoing work on the analysis of Fugue-256 hash function, a second round candidate in the NIST’s SHA3 competition. First we improve Aumasson and Phans’ integral distinguisher on the 5.5 rounds of the final transformation of Fugue-256 to 16.5 rounds. Next we improve the designers’ meet-in-the-middle preimage attack on Fugue-256 from 2480 time and memory to 2416. Finally, we comment on possible methods to obtain free-start distinguishers and free-start collisions for Fugue-256.
Resumo:
Halevi and Krawczyk proposed a message randomization algorithm called RMX as a front-end tool to the hash-then-sign digital signature schemes such as DSS and RSA in order to free their reliance on the collision resistance property of the hash functions. They have shown that to forge a RMX-hash-then-sign signature scheme, one has to solve a cryptanalytical task which is related to finding second preimages for the hash function. In this article, we will show how to use Dean’s method of finding expandable messages for finding a second preimage in the Merkle-Damgård hash function to existentially forge a signature scheme based on a t-bit RMX-hash function which uses the Davies-Meyer compression functions (e.g., MD4, MD5, SHA family) in 2 t/2 chosen messages plus 2 t/2 + 1 off-line operations of the compression function and similar amount of memory. This forgery attack also works on the signature schemes that use Davies-Meyer schemes and a variant of RMX published by NIST in its Draft Special Publication (SP) 800-106. We discuss some important applications of our attack.
Resumo:
Protection of passwords used to authenticate computer systems and networks is one of the most important application of cryptographic hash functions. Due to the application of precomputed memory look up attacks such as birthday and dictionary attacks on the hash values of passwords to find passwords, it is usually recommended to apply hash function to the combination of both the salt and password, denoted salt||password, to prevent these attacks. In this paper, we present the first security analysis of salt||password hashing application. We show that when hash functions based on the compression functions with easily found fixed points are used to compute the salt||password hashes, these hashes are susceptible to precomputed offline birthday attacks. For example, this attack is applicable to the salt||password hashes computed using the standard hash functions such as MD5, SHA-1, SHA-256 and SHA-512 that are based on the popular Davies-Meyer compression function. This attack exposes a subtle property of this application that although the provision of salt prevents an attacker from finding passwords, salts prefixed to the passwords do not prevent an attacker from doing a precomputed birthday attack to forge an unknown password. In this forgery attack, we demonstrate the possibility of building multiple passwords for an unknown password for the same hash value and salt. Interestingly, password||salt (i.e. salts suffixed to the passwords) hashes computed using Davies-Meyer hash functions are not susceptible to this attack, showing the first security gap between the prefix-salt and suffix-salt methods of hashing passwords.