961 resultados para Membrane-protein-1
Resumo:
An immunoperoxidase technique was used to examine IP-10 (interferon-gamma inducible protein 10), RANTES (regulated on activation normal T cell expressed and secreted), MCP-1 (monocyte chemoattractant protein-1), and MIP-1alpha (macrophage inflammatory protein-1alpha) in gingival biopsies from 21 healthy/gingivitis and 26 periodontitis subjects. The samples were placed into 3 groups according to the size of infiltrate. MIP-1alpha+ cells were more abundant than the other chemokines with few MCP-1+ cells. The mean percent MIP-1alpha+ cells was higher than the percent MCP-1+ cells (P = 0.02) in group 2 (intermediate size infiltrates) lesions from periodontitis subjects, other differences not being significant due to the large variations between tissue samples. Analysis of positive cells in relation to CD4/CD8 ratios showed that with an increased proportion of CD8+ cells, the mean percent MIP-1alpha+ cells was significantly higher in comparison with the mean percent RANTES+ and MCP-1+ cells (P < 0.015). Endothelial cells were MCP-1+ although positive capillaries were found on the periphery of infiltrates only. Keratinocyte expression of chemokines was weak and while the numbers of healthy/gingivitis and periodontitis tissue sections positive for IP-10, RANTES and MCP-1 reduced with increasing inflammation, those positive for MIP-1alpha remained constant for all groups. In conclusion, fewer leucocytes expressed MCP-1 in gingival tissue sections, however, the percent MIP-1alpha+ cells was increased particularly in tissues with increased proportions of CD8 cells and B cells with increasing inflammation and also in tissues with higher numbers of macrophages with little inflammation. Further studies are required to determine the significance of MIP-1alpha in periodontal disease.
Resumo:
Background: Metabolic syndrome (MetS) predisposes to cardiovascular complications. Increased concentrations of pro-inflammatory mediators and imbalanced concentrations of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) may reflect the pathophysiology of MetS. We compared the circulating levels of MMPs, TIMPs, and inflammatory mediators in MetS patients with those found in healthy controls. Methods: We studied 25 healthy subjects and 25 MetS patients. The plasma levels of pro-MMP-2 and pro-MMP-9 were determined by gelatin zymography. The plasma concentrations of MMP-8, MMP-3, TIMP-1, TIMP-2, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), intercellular adhesion molecule (sICAM-1), and sP-selectin were measured by ELISA kits. Results: We found higher sP-selectin, sICAM-1, MCP-1, and IL-6 (all P<0.05) concentrations in MetS patients compared with healthy controls. No differences in pro-MMP-2, MMP-3, and TIMP-2 levels were found (all P>0.05). However, we found higher pro-MMP-9, MMP-8. and TIMP-1 levels in MetS patients compared with healthy controls (all P<0.05). Conclusions: Patients with MetS have increased circulating concentrations of pro-MMP-9, MMP-8, and TIMP-1 that are associated with increased concentrations of pro-inflammatory mediators and adhesion molecules. These findings suggest that MMPs may have a role in the increased cardiovascular risk of MetS patients. Pharmacological interventions targeting MMPs, especially MMP-9 and MMP-8 deserve further investigation in MetS patients. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A deficiency in secretory immunoglobulin A (sIgA) is associated with recurrent upper respiratory tract infections both in the general community and in elite athletes. The aim of this paper was to investigate the effect of aerobic exercise and relaxation on various indices of sIgA in 12 male and 8 female adults who varied in levels of recreational activity. Salivary samples were obtained before, immediately after and 30 minutes after an incremental cycle ergometer test to fatigue. after 30 minutes of cycling at 30% or 60 % of maximum heart rate, and after 30 minutes of relaxation with guided imagery. Each session was run on a separate day. When expressed in relation to changes in salivary flow rate, sIgA did not change after exercise. However, both the absolute concentration and secretion rate of sIgA increased during relaxation (167 +/- 179 mug ml(-1), p < 0.001: and 37 +/- 71 g(.)min(-1), p < 0.05 respectively). Nonspecific protein increased more than sIgA during incremental exercise to fatigue (decrease in the sIgA/protein ratio 92 +/- 181 g(.)mg protein(-1), p(0.05), but sIgA relative to protein did not change during relaxation. Our findings suggest that sIgA secretion rate is a more appropriate measure of sIgA than sIgA relative to protein, both for exercise and relaxation. These data suggest the possibility of using relaxation to counteract the negative effects of intense exercise on sIgA levels.
Resumo:
Porphyromonas gingivalis is a key periodontal pathogen which has been implicated in the etiology of chronic adult periodontitis. Our aim was to develop a protein based vaccine for the prevention and or treatment of this disease. We used a whole genome sequencing approach to identify potential vaccine candidates. From a genomic sequence, we selected 120 genes using a series of bioinformatics methods. The selected genes were cloned for expression in Escherichia coli and screened with P. gingivalis antisera before purification and testing in an animal model. Two of these recombinant proteins (PG32 and PG33) demonstrated significant protection in the animal model, while a number were reactive with various antisera. This process allows the rapid identification of vaccine candidates from genomic data. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This study focuses on characterizing the genetic and biological alterations associated with squamous cell carcinoma development. Normal human epidermal keratinocytes (HEKs), cells isolated from a preneoplastic lesion (IEC-1), and two neoplastic cell lines, SCC-25 and COLD-16, were grown as raft cultures, and their gene expression profiles were screened using cDNA arrays. Our data indicated that the expression levels of at least 37 genes were significantly (P less than or equal to 0.05; 1.9% of genes screened) altered in neoplastic cells compared with normal cells. Of these genes, 10 genes were up-regulated and 27 genes were down-regulated in the neoplastic cells. In addition, 51% of the genes altered in the neoplastic cells were already altered in the preneoplastic IEC-1 cells. Immunohistochemical staining of patient tumors was used to verify the cDNA array analysis. Our analysis indicated that alterations in genes associated with extracellular matrix production and apoptosis are disrupted in preneoplastic cells, whereas later stages of neoplasia are associated with alterations in gene expression for genes involved in DNA repair or epidermal growth factor (EGF) receptor/mitogen-activated protein kinase kinase (MAPKK)/MAPK/activator protein-1 (AP-1) signaling. Subsequent functional analysis of the alterations in expression of the EGF receptor/MAPKK/MAPK/AP-1 genes suggested they did not contribute to the neoplastic phenotype.
Resumo:
Like many positive-strand RNA viruses, replication of the hepatitis C virus (HCV) is associated with cytoplasmic membrane rearrangements. However, it is unclear which HCV Proteins induce these ultrastructural features. This work examined the morphological changes induced by expression of the HCV structural proteins, core, E1 and E2, expressed from a Semliki Forest Virus (SFV) recombinant RNA replicon. Electron microscopy of cells expressing these proteins showed cytoplasmic vacuoles containing membranous and electron-dense material that were distinct from the type I cytoplasmic vacuoles induced during SFV replicon replication. Immunogold labelling showed that the core and E2 proteins localized to the external and internal membranes of these vacuoles. At times were also associated with some of the internal amorphous material. Dual immunogold labelling with antibodies raised against the core protein and against an endoplasmic reticulum (ER)-resident protein (protein disulphide isomerase) showed that the HCV-induced vacuoles were associated with ER-labelled membranes. This report has identified an association between the HCV core and E2 proteins with induced cytoplasmic vacuoles which are morphologically similar to those observed in HCV-infected liver tissue, suggesting that the HCV structural proteins may be responsible for the induction of these vacuoles during HCV replication in vivo.
Resumo:
Neisseria meningitidis expresses a range of lipooligosaccharide (LOS) structures, comprising of at least 13 immunotypes (ITs). Meningococcal LOS is subject to phase variation of its terminal structures allowing switching between ITs, which is proposed to have functional significance in disease. The objectives of this study were to investigate the repertoire of structures that can be expressed in clinical isolates, and to examine the role of phase-variable expression of LOS genes during invasive disease. Southern blotting was used to detect the presence of LOS biosynthetic genes in two collections of meningococci, a global set of strains previously assigned to lineages of greater or lesser virulence, and a collection of local clinical isolates which included paired throat and blood isolates from individual patients. Where the phase-variable genes lgtA, lgtC or IgtG were identified, they were amplified by PCR and the homopolymeric tracts, responsible for their phase-variable expression, were sequenced. The results revealed great potential for variation between alternate LOS structures in the isolates studied, with most strains capable of expressing several alternative terminal structures. The structures predicted to be currently expressed by the genotype of the strains agreed well with conventional immunotyping. No correlation was observed between the structural repertoire and virulence of the isolate. Based on the potential for LOS phase variation in the clinical collection and observations with the paired patient isolates, our data suggest that phase variation of LOS structures is not required for translocation between distinct compartments in the host. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies.
Resumo:
The retinoid orphan-related receptor-alpha (RORalpha) is a member of the ROR subfamily of orphan receptors and acts as a constitutive activator of transcription in the absence of exogenous ligands. To understand the basis of this activity, we constructed a homology model of Rill using the closely related TRbeta as a template. Molecular modeling suggested that bulky hydrophobic side chains occupy the RORa ligand cavity leaving a small but distinct cavity that may be involved in receptor stabilization. This model was subject to docking simulation with a receptor-interacting peptide from the steroid receptor coactivator, GR-interacting protein-1, which delineated a coactivator binding surface consisting of the signature motif spanning helices 3-5 and helix 12 [activation function 2 (AF2)]. Probing this surface with scanning alanine mutagenesis showed structural and functional equivalence between homologous residues of RORalpha and TRbeta. This was surprising (given that Rill is a ligand-independent activator, whereas TRbeta has an absolute requirement for ligand) and prompted us to use molecular modeling to identify differences between Rill and TRbeta in the way that the All helix interacts with the rest of the receptor. Modeling highlighted a nonconserved amino acid in helix 11 of RORa (Phe491) and a short-length of 3.10 helix at the N terminus of AF2 which we suggest i) ensures that AF2 is locked permanently in the holoconformation described for other liganded receptors and thus 2) enables ligand-independent recruitment of coactivators. Consistent with this, mutation of RORa Phe491 to either methionine or alanine (methionine is the homologous residue in TRbeta), reduced and ablated transcriptional activation and recruitment of coactivators, respectively. Furthermore, we were able to reconstitute transcriptional activity for both a deletion mutant of Ill lacking All and Phe491 Met, by overexpression of a GAL-AF2 fusion protein, demonstrating ligand-independent recruitment of AF2 and a role for Phe491 in recruiting AF2.
Resumo:
Placental growth hormone (PGH) progressively replaces pituitary growth hormone in the maternal circulation from mid-gestation onwards in human pregnancy. Our previous investigations have shown that placental growth hormone concentrations correlate well with foetal growth. Despite the apparent correlation between PGH and birthweight, the physiology of its secretion during pregnancy has not been well defined. We investigated the response of maternal serum PCH to oral glucose loading in pregnant women (n = 24) who demonstrated normal glucose tolerance at a mean gestation of 29 weeks. Mean (SEM) fasting PGH concentrations were high (36.9 [6.4] ng/ml). No suppression of PGH was noted at one, two or three hours after a 75 g oral glucose load. Similarly, no changes were noted in growth hormone binding protein or in calculated free PGH over the course of the glucose tolerance test. As expected, insulin concentrations rose sixfold and insulin like growth factor binding protein 1 concentrations fell by 20% with glucose loading. Cot-relation analysis showed maternal weight, BMI, fasting serum glucose serum insulin to be significantly correlated with the babies' birthweight. Our results support the proposition that PGH concentrations in maternal serum are not Suppressed by oral glucose loading in non-diabetic mothers.
Resumo:
Although vaccines have widely been regarded as the most cost-effective way to improve public health, for some organisms new technological advances in vaccine design and delivery, incurring additional developmental costs, will be essential. These organisms are typically those for which natural immunity is either slow to develop or does not develop at all. Clearly, such organisms have evolved strategies to evade immune responses and innovative approaches will be required to induce a type of immune response which is both different to that which develops naturally and is effective. This article describes some approaches to develop vaccines for two such organisms (malaria parasites and Streptococcus pyogenes (group A Streptococcus)) that are associated with widespread mortality and morbidity, mostly in the poorest countries of the world. At this stage, the challenges are primarily scientific, but if these hurdles are surmounted then the challenges will become financial ones - developing much needed vaccines for people least able to afford them. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, intergrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Vps4p (End13p) is an AAA-family ATPase that functions in membrane transport through endosomes, sorting of soluble vacuolar proteins to the vacuole, and multivesicular body (MVB) sorting of membrane proteins to the vacuole lumen. In a yeast two-hybrid screen with Vps4p as bait we isolated VPS20 (YMR077c) and the novel open reading frame YLA181c, for which the name VTA1 has recently been assigned (Saccharomyces Genome Database). Vps4p directly binds Vps20p and Vta1p in vitro and binding is not dependent on ATP-conversely, Vps4p binding to Vps20p is partially sensitive to ATP hydrolysis. Both ATP binding [Vps4p-(K179A)] and ATP hydrolysis [Vps4p-(E233Q)] mutant proteins exhibit enhanced binding to Vps20p and Vta1p in vitro. The Vps4p-Vps20p interaction involves the coiled-coil domain of each protein, whereas the Vps4p-Vta1p interaction involves the (non-coiled-coil) C-terminus of each protein. Deletion of either VPS20 (vps20Delta) or VTA1 (vta1Delta) leads to similar class E Vps(-) phenotypes resembling those of vps4Delta, including carboxypeptidase Y (CPY) secretion, a block in ubiquitin-dependent MVB sorting, and a delay in both post-internalisation endocytic transport and biosynthetic transport to the vacuole. The vacuole resident membrane protein Sna3p (whose MVB sorting is ubiquitin-independent) does not appear to exit the class E compartment or reach the vacuole in cells lacking Vps20p, Vta1p or Vps4p, in contrast to other proteins whose delivery to the vacuole is only delayed. We propose that Vps20p and Vta1p regulate Vps4p function in vivo.
Resumo:
The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 µM HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 µg) was reduced after Hg2+ treatment. Cholinesterase activity (µM h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure.
Resumo:
The present work involves the use of p-tert-butylcalix[4,6,8]arene carboxylic acid derivatives ((t)Butyl[4,6,8]CH2COOH) for selective extraction of hemoglobin. All three calixarenes extracted hemoglobin into the organic phase, exhibiting extraction parameters higher than 0.90. Evaluation of the solvent accessible positively charged amino acid side chains of hemoglobin (PDB entry 1XZ2) revealed that there are 8 arginine, 44 lysine and 30 histidine residues on the protein surface which may be involved in the interactions with the calixarene molecules. The hemoglobin-(t)Butyl[6]CH2COOH complex had pseudoperoxidase activity which catalysed the oxidation of syringaldazine in the presence of hydrogen peroxide in organic medium containing chloroform. The effect of pH, protein and substrate concentrations on biocatalysis was investigated using the hemoglobin-(t)Butyl[6]CH2COOH complex. This complex exhibited the highest specific activity of 9.92 x 10(-2) U mg protein(-1) at an initial pH of 7.5 in organic medium. Apparent kinetic parameters (V'(max), K'(m), k'(cat) and k'(cat)/K'(m)) for the pseudoperoxidase activity were determined in organic media for different pH values from a Michaelis-Menten plot. Furthermore, the stability of the protein-calixarene complex was investigated for different initial pH values and half-life (t(1/2)) values were obtained in the range of 1.96 and 2.64 days. Hemoglobin-calixarene complex present in organic medium was recovered in fresh aqueous solutions at alkaline pH, with a recovery of pseudoperoxidase activity of over 100%. These results strongly suggest that the use of calixarene derivatives is an alternative technique for protein extraction and solubilisation in organic media for biocatalysis.
Resumo:
A large epidemic of serogroup B meningococcal disease (MD), has been occurring in greater São Paulo, Brazil, since 1988.21 A Cuban-produced vaccine, based on outer-membrane-protein (OMP) from serogroup B: serotype 4: serosubtype P1.15 (B:4:P1.15) Neisseria meningitidis, was given to about 2.4 million children aged from 3 months to 6 years during 1989 and 1990. The administration of vaccine had little or no measurable effects on this outbreak. In order to detect clonal changes that could explain the continued increase in the incidence of disease after the vaccination, we serotyped isolates recovered between 1990 and 1996 from 834 patients with systemic disease. Strains B:4:P1.15, which was detected in the area as early as 1977, has been the most prevalent phenotype since 1988. These strains are still prevalent in the area and were responsible for about 68% of 834 serogroup B cases in the last 7 years. We analyzed 438 (52%) of these strains by restriction fragment length polymorphism (RFLPs) of rRNA genes (ribotyping). The most frequent pattern obtained was referred to as Rb1 (68%). We concluded that the same clone of B:4:P1.15-Rb1 strains was the most prevalent strain and responsible for the continued increase of incidence of serogroup B MD cases in greater São Paulo during the last 7 years in spite of the vaccination trial.