899 resultados para Matching de grafos
Resumo:
Prickly acacia, a Weed of National Significance or WONS, is a serious problem in Queensland particularly the Mitchell grass downs where it was once planted to provide shade for livestock. The chapter summarises current knowledge about the taxonomy, biology, distribution, ecology, impacts and biological control of the weed. Queensland has been trying to achieve biological control of prickly acacia since 1980 when it began foreign exploration in Pakistan. Since then further exploration was undertaken in Kenya, South Africa and presently India. Six insects have been released in Queensland but only two of these are established. Greater emphasis is being placed on climate matching, plant response to herbivory and genotype matching in present work and it is hoped that this approach will allow more rigorous evaluations of agent performance and better understanding of reasons for success or failure of agents.
Resumo:
Climate matching software (CLIMEX) was used to prioritise areas to explore for biological control agents in the native range of cat's claw creeper Macfadyena unguis-cati (Bignoniaceae), and to prioritise areas to release the agents in the introduced ranges of the plant. The native distribution of cat's claw creeper was used to predict the potential range of climatically suitable habitats for cat's claw creeper in its introduced ranges. A Composite Match Index (CMI) of cat's claw creeper was determined with the 'Match Climates' function in order to match the ranges in Australia and South Africa where the plant is introduced with its native range in South and Central America. This information was used to determine which areas might yield climatically-adapted agents. Locations in northern Argentina had CMI values which best matched sites with cat's claw creeper infestations in Australia and South Africa. None of the sites from where three currently prioritised biological control agents for cat's claw creeper were collected had CMI values higher than 0.8. The analysis showed that central and eastern Argentina, south Brazil, Uruguay and parts of Bolivia and Paraguay should be prioritised for exploration for new biological control agents for cat's claw creeper to be used in Australia and South Africa.
Resumo:
The normal-mode solution to the problem of acoustic wave propagation in an isovelocity ocean with a wavy surface is considered. The surface wave amplitude is assumed to be small compared to the acoustic wavelength, and the method of multiple scales is employed to study the interaction between normal-mode acoustic waves and the surface waves. A nonresonant interaction causes small fluctuations of the amplitude and phase of the acoustic wave at a rate dependent on the frequency of the surface wave. Backscatter occurs if the wavenumber of the surface wave is larger than that of the acoustic wave. The interaction becomes resonant if appropriate phase-matching conditions are satisfied. In this case, two acoustic normal modes get coupled, resulting in a large-scale periodic exchange of energy from one mode to another.
Resumo:
The point of departure in this dissertation was the practical safety problem of unanticipated, unfamiliar events and unexpected changes in the environment, the demanding situations which the operators should take care of in the complex socio-technical systems. The aim of this thesis was to increase the understanding of demanding situations and of the resources for coping with these situations by presenting a new construct, a conceptual model called Expert Identity (ExId) as a way to open up new solutions to the problem of demanding situations and by testing the model in empirical studies on operator work. The premises of the Core-Task Analysis (CTA) framework were adopted as a starting point: core-task oriented working practices promote the system efficiency (incl. safety, productivity and well-being targets) and that should be supported. The negative effects of stress were summarised and the possible countermeasures related to the operators' personal resources such as experience, expertise, sense of control, conceptions of work and self etc. were considered. ExId was proposed as a way to bring emotional-energetic depth into the work analysis and to supplement CTA-based practical methods to discover development challenges and to contribute to the development of complex socio-technical systems. The potential of ExId to promote understanding of operator work was demonstrated in the context of the six empirical studies on operator work. Each of these studies had its own practical objectives within the corresponding quite broad focuses of the studies. The concluding research questions were: 1) Are the assumptions made in ExId on the basis of the different theories and previous studies supported by the empirical findings? 2) Does the ExId construct promote understanding of the operator work in empirical studies? 3) What are the strengths and weaknesses of the ExId construct? The layers and the assumptions of the development of expert identity appeared to gain evidence. The new conceptual model worked as a part of an analysis of different kinds of data, as a part of different methods used for different purposes, in different work contexts. The results showed that the operators had problems in taking care of the core task resulting from the discrepancy between the demands and resources (either personal or external). The changes of work, the difficulties in reaching the real content of work in the organisation and the limits of the practical means of support had complicated the problem and limited the possibilities of the development actions within the case organisations. Personal resources seemed to be sensitive to the changes, adaptation is taking place, but not deeply or quickly enough. Furthermore, the results showed several characteristics of the studied contexts that complicated the operators' possibilities to grow into or with the demands and to develop practices, expertise and expert identity matching the core task. They were: discontinuation of the work demands, discrepancy between conceptions of work held in the other parts of organisation, visions and the reality faced by the operators, emphasis on the individual efforts and situational solutions. The potential of ExId to open up new paths to solving the problem of the demanding situations and its ability to enable studies on practices in the field was considered in the discussion. The results were interpreted as promising enough to encourage the conduction of further studies on ExId. This dissertation proposes especially contribution to supporting the workers in recognising the changing demands and their possibilities for growing with them when aiming to support human performance in complex socio-technical systems, both in designing the systems and solving the existing problems.
Resumo:
Pitch discrimination is a fundamental property of the human auditory system. Our understanding of pitch-discrimination mechanisms is important from both theoretical and clinical perspectives. The discrimination of spectrally complex sounds is crucial in the processing of music and speech. Current methods of cognitive neuroscience can track the brain processes underlying sound processing either with precise temporal (EEG and MEG) or spatial resolution (PET and fMRI). A combination of different techniques is therefore required in contemporary auditory research. One of the problems in comparing the EEG/MEG and fMRI methods, however, is the fMRI acoustic noise. In the present thesis, EEG and MEG in combination with behavioral techniques were used, first, to define the ERP correlates of automatic pitch discrimination across a wide frequency range in adults and neonates and, second, they were used to determine the effect of recorded acoustic fMRI noise on those adult ERP and ERF correlates during passive and active pitch discrimination. Pure tones and complex 3-harmonic sounds served as stimuli in the oddball and matching-to-sample paradigms. The results suggest that pitch discrimination in adults, as reflected by MMN latency, is most accurate in the 1000-2000 Hz frequency range, and that pitch discrimination is facilitated further by adding harmonics to the fundamental frequency. Newborn infants are able to discriminate a 20% frequency change in the 250-4000 Hz frequency range, whereas the discrimination of a 5% frequency change was unconfirmed. Furthermore, the effect of the fMRI gradient noise on the automatic processing of pitch change was more prominent for tones with frequencies exceeding 500 Hz, overlapping with the spectral maximum of the noise. When the fundamental frequency of the tones was lower than the spectral maximum of the noise, fMRI noise had no effect on MMN and P3a, whereas the noise delayed and suppressed N1 and exogenous N2. Noise also suppressed the N1 amplitude in a matching-to-sample working memory task. However, the task-related difference observed in the N1 component, suggesting a functional dissociation between the processing of spatial and non-spatial auditory information, was partially preserved in the noise condition. Noise hampered feature coding mechanisms more than it hampered the mechanisms of change detection, involuntary attention, and the segregation of the spatial and non-spatial domains of working-memory. The data presented in the thesis can be used to develop clinical ERP-based frequency-discrimination protocols and combined EEG and fMRI experimental paradigms.
Resumo:
This study provides evidence that after several decades of fighting for equal pay for equal work, an unexplained gender pay gap remains amongst senior executives in ASX-listed firms. After controlling for a large suite of personal, occupational and firm observables, we find female senior executives receive, on average, 22.58 percent less in base salary for the period 2002–2013. When executives are awarded performance-based pay, females receive on average 16.47 percent less in cash bonus and 18.21 percent less in long-term incentives than males. The results are robust to using firm fixed effects and propensity-score matching. Blinder–Oaxaca decomposition results show that the mean pay gap cannot be attributed to gender differences in attributes, including job titles. Instead, the results point to differences in returns on firm-specific variables, in particular firm risk.
Resumo:
The iterative two-person Prisoners’ Dilemma game has been generalised to theN-person case. The evolution of cooperation is explored by matching the Tit For Tat (TFT) strategy (Axelrod and Hamilton 1981) against the selfish strategy. Extension of TFT toN-person situations yields a graded set of strategies from the softest TFT, which continues cooperation even if only one of the opponents reciprocates it, to the hardest, which would do so only when all the remaining opponents cooperate. The hardest TFT can go to fixation against the selfish strategy provided it crosses a threshold frequencypc. All the other TFT are invadable by the selfish (D) or the pure defector strategy, while none can invadeD. Yet, provided a thresholdpc is crossed, they can coexist stably withD. AsN, the size of the group increases, the threshold pc also increases, indicating that the evolution of cooperation is more difficult for larger groups. Under certain conditions, only the soft TFT can coexist stably against the selfish strategyD, while the harder ones cannot. An interesting possibility of a complete takeover of the selfish population by successive invasions by harder and harder TFT strategies is also presented.
Resumo:
When experts construct mental images, they do not rely only on perceptual features; they also access domain-specific knowledge and skills in long-term memory, which enables them to exceed the capacity limitations of the short-term working memory system. The central question of the present dissertation was whether the facilitating effect of long-term memory knowledge on working memory imagery tasks is primarily based on perceptual chunking or whether it relies on higher-level conceptual knowledge. Three domains of expertise were studied: chess, music, and taxi driving. The effects of skill level, stimulus surface features, and the stimulus structure on incremental construction of mental images were investigated. A method was developed to capture the chunking mechanisms that experts use in constructing images: chess pieces, street names, and visual notes were presented in a piecemeal fashion for later recall. Over 150 experts and non-experts participated in a total of 13 experiments, as reported in five publications. The results showed skill effects in all of the studied domains when experts performed memory and problem solving tasks that required mental imagery. Furthermore, only experts' construction of mental images benefited from meaningful stimuli. Manipulation of the stimulus surface features, such as replacing chess pieces with dots, did not significantly affect experts' performance in the imagery tasks. In contrast, the structure of the stimuli had a significant effect on experts' performance in every task domain. For example, taxi drivers recalled more street names from lists that formed a spatially continuous route than from alphabetically organised lists. The results suggest that the mechanisms of conceptual chunking rather than automatic perceptual pattern matching underlie expert performance, even though the tasks of the present studies required perception-like mental representations. The results show that experts are able to construct skilled images that surpass working memory capacity, and that their images are conceptually organised and interpreted rather than merely depictive.
Resumo:
In the future the number of the disabled drivers requiring a special evaluation of their driving ability will increase due to the ageing population, as well as the progress of adaptive technology. This places pressure on the development of the driving evaluation system. Despite quite intensive research there is still no consensus concerning what is the factual situation in a driver evaluation (methodology), which measures should be included in an evaluation (methods), and how an evaluation has to be carried out (practise). In order to find answers to these questions we carried out empirical studies, and simultaneously elaborated upon a conceptual model for driving and a driving evaluation. The findings of empirical studies can be condensed into the following points: 1) A driving ability defined by the on-road driving test is associated with different laboratory measures depending on the study groups. Faults in the laboratory tests predicted faults in the on-road driving test in the novice group, whereas slowness in the laboratory predicted driving faults in the experienced drivers group. 2) The Parkinson study clearly showed that even an experienced clinician cannot reliably accomplish an evaluation of a disabled person’s driving ability without collaboration with other specialists. 3) The main finding of the stroke study was that the use of a multidisciplinary team as a source of information harmonises the specialists’ evaluations. 4) The patient studies demonstrated that the disabled persons themselves, as well as their spouses, are as a rule not reliable evaluators. 5) From the safety point of view, perceptible operations with the control devices are not crucial, but correct mental actions which the driver carries out with the help of the control devices are of greatest importance. 6) Personality factors including higher-order needs and motives, attitudes and a degree of self-awareness, particularly a sense of illness, are decisive when evaluating a disabled person’s driving ability. Personality is also the main source of resources concerning compensations for lower-order physical deficiencies and restrictions. From work with the conceptual model we drew the following methodological conclusions: First, the driver has to be considered as a holistic subject of the activity, as a multilevel hierarchically organised system of an organism, a temperament, an individuality, and a personality where the personality is the leading subsystem from the standpoint of safety. Second, driving as a human form of a sociopractical activity, is also a hierarchically organised dynamic system. Third, in an evaluation of driving ability it is a question of matching these two hierarchically organised structures: a subject of an activity and a proper activity. Fourth, an evaluation has to be person centred but not disease-, function- or method centred. On the basis of our study a multidisciplinary team (practitioner, driving school teacher, psychologist, occupational therapist) is recommended for use in demanding driver evaluations. Primary in a driver’s evaluations is a coherent conceptual model while concrete methods of evaluations may vary. However, the on-road test must always be performed if possible.
Resumo:
The earliest stages of human cortical visual processing can be conceived as extraction of local stimulus features. However, more complex visual functions, such as object recognition, require integration of multiple features. Recently, neural processes underlying feature integration in the visual system have been under intensive study. A specialized mid-level stage preceding the object recognition stage has been proposed to account for the processing of contours, surfaces and shapes as well as configuration. This thesis consists of four experimental, psychophysical studies on human visual feature integration. In two studies, classification image a recently developed psychophysical reverse correlation method was used. In this method visual noise is added to near-threshold stimuli. By investigating the relationship between random features in the noise and observer s perceptual decision in each trial, it is possible to estimate what features of the stimuli are critical for the task. The method allows visualizing the critical features that are used in a psychophysical task directly as a spatial correlation map, yielding an effective "behavioral receptive field". Visual context is known to modulate the perception of stimulus features. Some of these interactions are quite complex, and it is not known whether they reflect early or late stages of perceptual processing. The first study investigated the mechanisms of collinear facilitation, where nearby collinear Gabor flankers increase the detectability of a central Gabor. The behavioral receptive field of the mechanism mediating the detection of the central Gabor stimulus was measured by the classification image method. The results show that collinear flankers increase the extent of the behavioral receptive field for the central Gabor, in the direction of the flankers. The increased sensitivity at the ends of the receptive field suggests a low-level explanation for the facilitation. The second study investigated how visual features are integrated into percepts of surface brightness. A novel variant of the classification image method with brightness matching task was used. Many theories assume that perceived brightness is based on the analysis of luminance border features. Here, for the first time this assumption was directly tested. The classification images show that the perceived brightness of both an illusory Craik-O Brien-Cornsweet stimulus and a real uniform step stimulus depends solely on the border. Moreover, the spatial tuning of the features remains almost constant when the stimulus size is changed, suggesting that brightness perception is based on the output of a single spatial frequency channel. The third and fourth studies investigated global form integration in random-dot Glass patterns. In these patterns, a global form can be immediately perceived, if even a small proportion of random dots are paired to dipoles according to a geometrical rule. In the third study the discrimination of orientation structure in highly coherent concentric and Cartesian (straight) Glass patterns was measured. The results showed that the global form was more efficiently discriminated in concentric patterns. The fourth study investigated how form detectability depends on the global regularity of the Glass pattern. The local structure was either Cartesian or curved. It was shown that randomizing the local orientation deteriorated the performance only with the curved pattern. The results give support for the idea that curved and Cartesian patterns are processed in at least partially separate neural systems.
Resumo:
Wilmot Senaratne, Bill Palmer and Bob Sutherst recently published their paper 'Applications of CLIMEX modelling leading to improved biological control' in Proceedings of the 16th Australian Weeds Conference. They looked at three examples where modern climate matching techniques using computer software produces decisions and results than might happen using previous techniques such as climadiagrams. Assessment of climatic suitability is important at various stages of a biological control project; from initial foreign exploration, to risk assessment in preparation for the release of a particular agent, through to selection of release sites that maximise the agent´s chances of initial establishment. It is now also necessary to predict potential future distributions of both target weeds and agents under climate change.
Resumo:
The promotion of controlled traffic (matching wheel and row spacing) in the Australian sugar industry is necessitating a widening of row spacing beyond the standard 1.5 m. As all cultivars grown in the Australian industry have been selected under the standard row spacing there are concerns that at least some cultivars may not be suitable for wider rows. To address this issue, experiments were established in northern and southern Queensland in which cultivars, with different growth characteristics, recommended for each region, were grown under a range of different row configurations. In the northern Queensland experiment at Gordonvale, cultivars Q187((sic)), Q200((sic)), Q201((sic)), and Q218((sic)) were grown in 1.5-m single rows, 1.8-m single rows, 1.8-m dual rows (50 cm between duals), and 2.3-m dual rows (80 cm between duals). In the southern Queensland experiment at Farnsfield, cvv. Q138, Q205((sic)), Q222((sic)) and Q188((sic)) were also grown in 1.5-m single rows, 1.8-m single rows, 1.8-m dual rows (50 cm between duals), while 1.8-m-wide throat planted single row and 2.0-m dual row (80 cm between duals) configurations were also included. There was no difference in yield between the different row configurations at Farnsfield but there was a significant row configuration x cultivar interaction at Gordonvale due to good yields in 1.8-m single and dual rows with Q201((sic)) and poor yields with Q200((sic)) at the same row spacings. There was no significant difference between the two cultivars in 1.5-m single and 2.3-m dual rows. The experiments once again demonstrated the compensatory capacity that exists in sugarcane to manipulate stalk number and individual stalk weight as a means of producing similar yields across a range of row configurations and planting densities. There was evidence of different growth patterns between cultivars in response to different row configurations (viz. propensity to tiller, susceptibility to lodging, ability to compensate between stalk number and stalk weight), suggesting that there may be genetic differences in response to row configuration. It is argued that there is a need to evaluate potential cultivars under a wider range of row configurations than the standard 1.5-m single rows. Cultivars that perform well in row configurations ranging from 1.8 to 2.0 m are essential if the adverse effects of soil compaction are to be managed through the adoption of controlled traffic.
Resumo:
Controlled traffic (matching wheel and row spacing) is being promoted as a means to manage soil compaction in the Australian sugar industry. However, machinery limitations dictate that wider row spacings than the standard 1.5-m single row will need to be adopted to incorporate controlled traffic and many growers are reluctant to widen row spacing for fear of yield penalties. To address these concerns, contrasting row configuration and planting density combinations were investigated for their effect on cane and sugar yield in large-scale experiments in the Gordonvale, Tully, Ingham, Mackay, and Bingera (near Bundaberg) sugarcane-growing regions of Queensland, Australia. The results showed that sugarcane possesses a capacity to compensate for different row configurations and planting densities through variation in stalk number and individual stalk weight. Row configurations ranging from 1.5-m single rows (the current industry standard) to 1.8-m dual rows (50 cm between duals), 2.1-m dual (80 cm between duals) and triple ( 65 cm between triples) rows, and 2.3-m triple rows (65 cm between triples) produced similar yields. Four rows (50 cm apart) on a 2.1-m configuration (quad rows) produced lower yields largely due to crop lodging, while a 1.8-m single row configuration produced lower yields in the plant crop, probably due to inadequate resource availability (water stress/limited radiation interception). The results suggest that controlled traffic can be adopted in the Australian sugar industry by changing from a 1.5-m single row to 1.8-m dual row configuration without yield penalty. Further, the similar yields obtained with wider row configurations (2 m or greater with multiple rows) in these experiments emphasise the physiological and environmental plasticity that exists in sugarcane. Controlled traffic can be implemented with these wider row configurations (>2 m), although it will be necessary to carry out expensive modifications to the current harvester and haul-out equipment. There were indications from this research that not all cultivars were suited to configurations involving multiple rows. The results suggest that consideration be given to assessing clones with different growth habits under a range of row configurations to find the most suitable plant types for controlled traffic cropping systems.
Resumo:
Effective study in the native range to identify potential agents underpins all efforts in classical biological control of weeds. Good agents that demonstrate both a high degree of host specificity and the potential to be damaging are a very limited resource and must therefore be carefully studied and considered. The overseas component is often operationally difficult and expensive but can contribute considerably more than a list of herbivores attacking a particular target. While the principles underlying this foreign component have been understood for some time, recently developed technologies and methods can make very significant contributions to foreign studies. Molecular and genetic characterisations of both target weed and agent organism can be increasingly employed to more accurately define the identity and phylogeny of them. Climate matching and modelling software is now available and can be utilised to better select agents for particular regions of concern. Relational databases can store collection information for analysis and future enquiry while quantification of sampling effort, employment of statistical survey methods and analysis by techniques such as rarefaction curves contribute to efficient and effective searching. Obtaining good and timely identifications for discovered agent organisms is perhaps the most serious issue confronting the modern explorer. The diminishing numbers of specialist taxonomists employed at the major museums while international and national protocols demand higher standards of identity exacerbates the issue. Genetic barcoding may provide a very useful tool to overcome this problem. Native-range work also offers under-exploited opportunities for contributing towards predicting safety, abundance and efficacy of potential agents in their target environment.
Resumo:
Considerable progress has been made towards the successful classical biological control of many of Australia’s exotic weeds over the past decade. Some 43 new arthropod or pathogen agents were released in 19 projects. Effective biological control was achieved in several projects with the outstanding successes being the control of rubber vine, Cryptostegia grandiflora, and bridal creeper, Asparagus asparagoides. Significant developments also occurred in target prioritization, procedures for target and agent approval, funding, infrastructure and cooperation between agencies. Scientific developments included greater emphasis on climate matching, plant and agent phylogeny, molecular diagnostics, agent prioritization and agent evaluation.