919 resultados para MULTI-ELEMENT ANALYSIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study evaluated the effect of quantity of resin composite, C-factor, and geometry in Class V restorations on shrinkage stress after bulk fill insertion of resin using two-dimensional finite element analysis.Methods: An image of a buccolingual longitudinal plane in the middle of an upper first premolar and supporting tissues was used for modeling 10 groups: cylindrical cavity, erosion, and abfraction lesions with the same C-factor (1.57), a second cylindrical cavity and abfraction lesion with the same quantity of resin (QR) as the erosion lesion, and then all repeated with a bevel on the occlusal cavosurface angle. The 10 groups were imported into Ansys 13.0 for two-dimensional finite element analysis. The mesh was built with 30,000 triangle and square elements of 0.1 mm in length for all the models. All materials were considered isotropic, homogeneous, elastic, and linear, and the resin composite shrinkage was simulated by thermal analogy. The maximum principal (MPS) and von Mises stresses (VMS) were analyzed for comparing the behavior of the groups.Results: Different values of angles for the cavosurface margin in enamel and dentin were obtained for all groups and the higher the angle, the lower the stress concentration. When the groups with the same C-factor and QR were compared, the erosion shape cavity showed the highest MPS and VMS values, and abfraction shape, the lowest. A cavosurface bevel decreased the stress values on the occlusal margin. The geometry factor overcame the effects of C-factor and QR in some situations.Conclusion: Within the limitations of the current methodology, it is possible to conclude that the combination of all variables studied influences the stress, but the geometry is the most important factor to be considered by the operator.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective. Assessment of genetic parameters for accumulative productivity trait (ACP) and genetic correlations with age at first calving (AFC), between calving interval of first and second parity (BCI1) and longevity (LONG). Materials and methods. 8584 Brahman female records were used with an animal model in multi-trait analysis with restricted maximum likelihood method, implemented using the WOMBAT software. The models considered the fixed effects of contemporary group, parity and weaning weight of first calf covariate, the only random effect was the genetic additive direct. Weaning weight (P240) was included to reduce the effect of selection on the estimation of variance components. Results. The heritability estimates were 0.3 +/- 0.04, 0.11 +/- 0.03, 0.07 +/- 0.03 and 0.24 +/- 0.04 for AFC, BCI1, LONG and ACP respectively. Correlations between ACP and the other features were moderate to high and favorable. Conclusions. ACP can be included in breeding programs for Brahman, and used as selection criteria for its moderate heritability and genetic correlation with reproductive traits.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective. This study aimed to investigate the influence of restoration thickness to the fracture resistance of adhesively bonded Lava (TM) Ultimate CAD/CAM, a Resin Nano Ceramic(RNC), and IPS e. max CAD ceramic.Methods. Polished Lava (TM) Ultimate CAD/CAM (Group L), sandblasted Lava (TM) Ultimate CAD/CAM (Group LS), and sandblasted IPS e.max CAD (Group ES) discs (n=8, phi=10 mm) with a thickness of respectively 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, and 3.0 mm were cemented to corresponding epoxy supporting discs, achieving a final thickness of 3.5 mm. All the 120 specimens were loaded with a universal testing machine at a crosshead speed of 1 mm/min. The load (N) at failure was recorded as fracture resistance. The stress distribution for 0.5 mm restorative discs of each group was analyzed by Finite Element Analysis (FEA). The results of facture resistances were analyzed by one-way ANOVA and regression.Results. For the same thickness of testing discs, the fracture resistance of Group L was always significantly lower than the other two groups. The 0.5 mm discs in Group L resulted in the lowest value of 1028 (112) N. There was no significant difference between Group LS and Group ES when the restoration thickness ranged between 1.0 mm and 2.0 mm. There was a linear relation between fracture resistance and restoration thickness in Group L (R = 0.621, P < 0.001) and in Group ES (R = 0.854, P < 0.001). FEA showed a compressive permanent damage in all groups.Significance. The materials tested in this in vitro study with the thickness above 0.5 mm could afford the normal bite force. When Lava Ultimate CAD/CAM is used, sandblasting is suggested to get a better bonding. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Topological optimization problems based on stress criteria are solved using two techniques in this paper. The first technique is the conventional Evolutionary Structural Optimization (ESO), which is known as hard kill, because the material is discretely removed; that is, the elements under low stress that are being inefficiently utilized have their constitutive matrix has suddenly reduced. The second technique, proposed in a previous paper, is a variant of the ESO procedure and is called Smooth ESO (SESO), which is based on the philosophy that if an element is not really necessary for the structure, its contribution to the structural stiffness will gradually diminish until it no longer influences the structure; its removal is thus performed smoothly. This procedure is known as "soft-kill"; that is, not all of the elements removed from the structure using the ESO criterion are discarded. Thus, the elements returned to the structure must provide a good conditioning system that will be resolved in the next iteration, and they are considered important to the optimization process. To evaluate elasticity problems numerically, finite element analysis is applied, but instead of using conventional quadrilateral finite elements, a plane-stress triangular finite element was implemented with high-order modes for solving complex geometric problems. A number of typical examples demonstrate that the proposed approach is effective for solving problems of bi-dimensional elasticity. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Given the importance of Guzera breeding programs for milk production in the tropics, the objective of this study was to compare alternative random regression models for estimation of genetic parameters and prediction of breeding values. Test-day milk yields records (TDR) were collected monthly, in a maximum of 10 measurements. The database included 20,524 records of first lactation from 2816 Guzera cows. TDR data were analyzed by random regression models (RRM) considering additive genetic, permanent environmental and residual effects as random and the effects of contemporary group (CG), calving age as a covariate (linear and quadratic effects) and mean lactation curve as fixed. The genetic additive and permanent environmental effects were modeled by RRM using Wilmink, All and Schaeffer and cubic B-spline functions as well as Legendre polynomials. Residual variances were considered as heterogeneous classes, grouped differently according to the model used. Multi-trait analysis using finite-dimensional models (FDM) for testday milk records (TDR) and a single-trait model for 305-days milk yields (default) using the restricted maximum likelihood method were also carried out as further comparisons. Through the statistical criteria adopted, the best RRM was the one that used the cubic B-spline function with five random regression coefficients for the genetic additive and permanent environmental effects. However, the models using the Ali and Schaeffer function or Legendre polynomials with second and fifth order for, respectively, the additive genetic and permanent environmental effects can be adopted, as little variation was observed in the genetic parameter estimates compared to those estimated by models using the B-spline function. Therefore, due to the lower complexity in the (co)variance estimations, the model using Legendre polynomials represented the best option for the genetic evaluation of the Guzera lactation records. An increase of 3.6% in the accuracy of the estimated breeding values was verified when using RRM. The ranks of animals were very close whatever the RRM for the data set used to predict breeding values. Considering P305, results indicated only small to medium difference in the animals' ranking based on breeding values predicted by the conventional model or by RRM. Therefore, the sum of all the RRM-predicted breeding values along the lactation period (RRM305) can be used as a selection criterion for 305-day milk production. (c) 2014 Elsevier B.V. All rights reserved.