992 resultados para Méthode de Monte Carlo
Resumo:
The utility of sequencing a second highly variable locus in addition to the spa gene (e.g., double-locus sequence typing [DLST]) was investigated to overcome limitations of a Staphylococcus aureus single-locus typing method. Although adding a second locus seemed to increase discriminatory power, it was not sufficient to definitively infer evolutionary relationships within a single multilocus sequence type (ST-5).
Resumo:
Despite the fact that in living cells DNA molecules are long and highly crowded, they are rarely knotted. DNA knotting interferes with the normal functioning of the DNA and, therefore, molecular mechanisms evolved that maintain the knotting and catenation level below that which would be achieved if the DNA segments could pass randomly through each other. Biochemical experiments with torsionally relaxed DNA demonstrated earlier that type II DNA topoisomerases that permit inter- and intramolecular passages between segments of DNA molecules use the energy of ATP hydrolysis to select passages that lead to unknotting rather than to the formation of knots. Using numerical simulations, we identify here another mechanism by which topoisomerases can keep the knotting level low. We observe that DNA supercoiling, such as found in bacterial cells, creates a situation where intramolecular passages leading to knotting are opposed by the free-energy change connected to transitions from unknotted to knotted circular DNA molecules.
Resumo:
This paper proposes a method to conduct inference in panel VAR models with cross unit interdependencies and time variations in the coefficients. The approach can be used to obtain multi-unit forecasts and leading indicators and to conduct policy analysis in a multiunit setups. The framework of analysis is Bayesian and MCMC methods are used to estimate the posterior distribution of the features of interest. The model is reparametrized to resemble an observable index model and specification searches are discussed. As an example, we construct leading indicators for inflation and GDP growth in the Euro area using G-7 information.
Resumo:
À l‟aide des microdonnées du recensement de 2000 et des données administratives sur l‟éducation et en s‟appuyant sur : 1) les scénarios concernant l‟évolution démographique, d‟éducation et d‟activité économique et 2) un modèle de microsimulation, on a projeté pour la période 2000 à 2025, certaines caractéristiques et comportements démographiques et socio-économiques de la population du Cap-Vert, notamment ceux liés à l‟évolution du statut d‟activité. Selon le scénario le plus plausible, à l‟horizon 2025, le pays se trouvera à l‟étape avancée de la seconde phase de sa transition démographique. Sa population continuerait de croître en raison de sa structure par âge relativement jeune. Bien que le solde migratoire tende à être nul et que la mortalité tende à se stabiliser (près de 5 à 7 décès pour 1 000 habitants par an), cette croissance sera à un rythme moins rapide (d‟environ 1,8 % par an) que celui de la décennie 1990-2000, et ce, malgré le déclin de la fécondité. De 2000 à 2025, le pays pourrait connaître également une augmentation des personnes âgées de 15 à 24 ans, variant de 26 % à 29 % selon les scénarios envisagés, soit ceux et celles qui entreront sur le marché du travail au cours de la période. Le nombre de ces jeunes n‟ayant pas obtenu un diplôme d‟études secondaire, en 2025, pourrait augmenter, selon les scénarios envisagés, variant de 30 % à 44 % de plus qu‟en 2000. Le nombre de personnes de ce groupe d‟âge ayant obtenu un diplôme d‟études secondaires ou plus, le pays pourrait voir leur nombre à décupler de 11 fois à 13 fois à la à l‟horizon 2025.
Resumo:
We analyze crash data collected by the Iowa Department of Transportation using Bayesian methods. The data set includes monthly crash numbers, estimated monthly traffic volumes, site length and other information collected at 30 paired sites in Iowa over more than 20 years during which an intervention experiment was set up. The intervention consisted in transforming 15 undivided road segments from four-lane to three lanes, while an additional 15 segments, thought to be comparable in terms of traffic safety-related characteristics were not converted. The main objective of this work is to find out whether the intervention reduces the number of crashes and the crash rates at the treated sites. We fitted a hierarchical Poisson regression model with a change-point to the number of monthly crashes per mile at each of the sites. Explanatory variables in the model included estimated monthly traffic volume, time, an indicator for intervention reflecting whether the site was a “treatment” or a “control” site, and various interactions. We accounted for seasonal effects in the number of crashes at a site by including smooth trigonometric functions with three different periods to reflect the four seasons of the year. A change-point at the month and year in which the intervention was completed for treated sites was also included. The number of crashes at a site can be thought to follow a Poisson distribution. To estimate the association between crashes and the explanatory variables, we used a log link function and added a random effect to account for overdispersion and for autocorrelation among observations obtained at the same site. We used proper but non-informative priors for all parameters in the model, and carried out all calculations using Markov chain Monte Carlo methods implemented in WinBUGS. We evaluated the effect of the four to three-lane conversion by comparing the expected number of crashes per year per mile during the years preceding the conversion and following the conversion for treatment and control sites. We estimated this difference using the observed traffic volumes at each site and also on a per 100,000,000 vehicles. We also conducted a prospective analysis to forecast the expected number of crashes per mile at each site in the study one year, three years and five years following the four to three-lane conversion. Posterior predictive distributions of the number of crashes, the crash rate and the percent reduction in crashes per mile were obtained for each site for the months of January and June one, three and five years after completion of the intervention. The model appears to fit the data well. We found that in most sites, the intervention was effective and reduced the number of crashes. Overall, and for the observed traffic volumes, the reduction in the expected number of crashes per year and mile at converted sites was 32.3% (31.4% to 33.5% with 95% probability) while at the control sites, the reduction was estimated to be 7.1% (5.7% to 8.2% with 95% probability). When the reduction in the expected number of crashes per year, mile and 100,000,000 AADT was computed, the estimates were 44.3% (43.9% to 44.6%) and 25.5% (24.6% to 26.0%) for converted and control sites, respectively. In both cases, the difference in the percent reduction in the expected number of crashes during the years following the conversion was significantly larger at converted sites than at control sites, even though the number of crashes appears to decline over time at all sites. Results indicate that the reduction in the expected number of sites per mile has a steeper negative slope at converted than at control sites. Consistent with this, the forecasted reduction in the number of crashes per year and mile during the years after completion of the conversion at converted sites is more pronounced than at control sites. Seasonal effects on the number of crashes have been well-documented. In this dataset, we found that, as expected, the expected number of monthly crashes per mile tends to be higher during winter months than during the rest of the year. Perhaps more interestingly, we found that there is an interaction between the four to three-lane conversion and season; the reduction in the number of crashes appears to be more pronounced during months, when the weather is nice than during other times of the year, even though a reduction was estimated for the entire year. Thus, it appears that the four to three-lane conversion, while effective year-round, is particularly effective in reducing the expected number of crashes in nice weather.
Resumo:
We consider the application of normal theory methods to the estimation and testing of a general type of multivariate regressionmodels with errors--in--variables, in the case where various data setsare merged into a single analysis and the observable variables deviatepossibly from normality. The various samples to be merged can differ on the set of observable variables available. We show that there is a convenient way to parameterize the model so that, despite the possiblenon--normality of the data, normal--theory methods yield correct inferencesfor the parameters of interest and for the goodness--of--fit test. Thetheory described encompasses both the functional and structural modelcases, and can be implemented using standard software for structuralequations models, such as LISREL, EQS, LISCOMP, among others. An illustration with Monte Carlo data is presented.
Resumo:
A new algorithm called the parameterized expectations approach(PEA) for solving dynamic stochastic models under rational expectationsis developed and its advantages and disadvantages are discussed. Thisalgorithm can, in principle, approximate the true equilibrium arbitrarilywell. Also, this algorithm works from the Euler equations, so that theequilibrium does not have to be cast in the form of a planner's problem.Monte--Carlo integration and the absence of grids on the state variables,cause the computation costs not to go up exponentially when the numberof state variables or the exogenous shocks in the economy increase. \\As an application we analyze an asset pricing model with endogenousproduction. We analyze its implications for time dependence of volatilityof stock returns and the term structure of interest rates. We argue thatthis model can generate hump--shaped term structures.
Resumo:
We extend to score, Wald and difference test statistics the scaled and adjusted corrections to goodness-of-fit test statistics developed in Satorra and Bentler (1988a,b). The theory is framed in the general context of multisample analysis of moment structures, under general conditions on the distribution of observable variables. Computational issues, as well as the relation of the scaled and corrected statistics to the asymptotic robust ones, is discussed. A Monte Carlo study illustrates thecomparative performance in finite samples of corrected score test statistics.
Resumo:
Aim of the present article was to perform three-dimensional (3D) single photon emission tomography-based dosimetry in radioimmunotherapy (RIT) with (90)Y-ibritumomab-tiuxetan. A custom MATLAB-based code was used to elaborate 3D images and to compare average 3D doses to lesions and to organs at risk (OARs) with those obtained with planar (2D) dosimetry. Our 3D dosimetry procedure was validated through preliminary phantom studies using a body phantom consisting of a lung insert and six spheres with various sizes. In phantom study, the accuracy of dose determination of our imaging protocol decreased when the object volume decreased below 5 mL, approximately. The poorest results were obtained for the 2.58 mL and 1.30 mL spheres where the dose error evaluated on corrected images with regard to the theoretical dose value was -12.97% and -18.69%, respectively. Our 3D dosimetry protocol was subsequently applied on four patients before RIT with (90)Y-ibritumomab-tiuxetan for a total of 5 lesions and 4 OARs (2 livers, 2 spleens). In patient study, without the implementation of volume recovery technique, tumor absorbed doses calculated with the voxel-based approach were systematically lower than those calculated with the planar protocol, with average underestimation of -39% (range from -13.1% to -62.7%). After volume recovery, dose differences reduce significantly, with average deviation of -14.2% (range from -38.7.4% to +3.4%, 1 overestimation, 4 underestimations). Organ dosimetry in one case overestimated, in the other underestimated the dose delivered to liver and spleen. However, both for 2D and 3D approach, absorbed doses to organs per unit administered activity are comparable with most recent literature findings.
Resumo:
Geralmente pensa-se que a estrutura das comunidades está determinada pela competição interespecífica. Os críticos desta idéia indicam que devemos primeiramente demonstrar a estrutura com modelos nulos par testar se a estrutura realmente existe. Aqui, utilizamos 179 espécies predadoras e saprófagas de moscas da família Muscidae (Diptera) que foram capturadas com armadilha Malaise em seis locais no Estado do Paraná, durante um ano de estudo. Para testar a estrutura das comunidades, geramos cinco matrizes de presença-ausência (1-0): duas por guildas tróficas, duas por tipo de habitat e uma matriz geral (taxonômica). Dois índices de co-ocorrência (C) e covariância (V) de espécies foram calculados nas matrizes desenvolvidas através de 5000 aleatorizações de Monte Carlo. Estas seguiram duas diferentes premissas: 1) número de espécies por local fixo, e 2) proporções constantes de espécies em todos os locais. Comparações com modelos nulos de comunidades mostram que a assembléia "taxonômica" de espécies tem uma falsa estrutura, enquanto assembléias de espécies "ecológicas" têm uma estrutura verdadeira. Enquanto as assembléias ecológicas são consistentes com a teoria de competição interespecífica como uma causa da estrutura das comunidades, é possível que outras causas possam também ser importantes.
Resumo:
This article is an introduction to Malliavin Calculus for practitioners.We treat one specific application to the calculation of greeks in Finance.We consider also the kernel density method to compute greeks and anextension of the Vega index called the local vega index.
Resumo:
Nonlinear regression problems can often be reduced to linearity by transforming the response variable (e.g., using the Box-Cox family of transformations). The classic estimates of the parameter defining the transformation as well as of the regression coefficients are based on the maximum likelihood criterion, assuming homoscedastic normal errors for the transformed response. These estimates are nonrobust in the presence of outliers and can be inconsistent when the errors are nonnormal or heteroscedastic. This article proposes new robust estimates that are consistent and asymptotically normal for any unimodal and homoscedastic error distribution. For this purpose, a robust version of conditional expectation is introduced for which the prediction mean squared error is replaced with an M scale. This concept is then used to develop a nonparametric criterion to estimate the transformation parameter as well as the regression coefficients. A finite sample estimate of this criterion based on a robust version of smearing is also proposed. Monte Carlo experiments show that the new estimates compare favorably with respect to the available competitors.
Resumo:
Although the histogram is the most widely used density estimator, itis well--known that the appearance of a constructed histogram for a given binwidth can change markedly for different choices of anchor position. In thispaper we construct a stability index $G$ that assesses the potential changesin the appearance of histograms for a given data set and bin width as theanchor position changes. If a particular bin width choice leads to an unstableappearance, the arbitrary choice of any one anchor position is dangerous, anda different bin width should be considered. The index is based on the statisticalroughness of the histogram estimate. We show via Monte Carlo simulation thatdensities with more structure are more likely to lead to histograms withunstable appearance. In addition, ignoring the precision to which the datavalues are provided when choosing the bin width leads to instability. We provideseveral real data examples to illustrate the properties of $G$. Applicationsto other binned density estimators are also discussed.
Resumo:
This paper describes a methodology to estimate the coefficients, to test specification hypothesesand to conduct policy exercises in multi-country VAR models with cross unit interdependencies, unit specific dynamics and time variations in the coefficients. The framework of analysis is Bayesian: a prior flexibly reduces the dimensionality of the model and puts structure on the time variations; MCMC methods are used to obtain posterior distributions; and marginal likelihoods to check the fit of various specifications. Impulse responses and conditional forecasts are obtained with the output of MCMC routine. The transmission of certain shocks across countries is analyzed.