947 resultados para Link quality estimation
Resumo:
A new algorithm for the velocity vector estimation of moving ships using Single Look Complex (SLC) SAR data in strip map acquisition mode is proposed. The algorithm exploits both amplitude and phase information of the Doppler decompressed data spectrum, with the aim to estimate both the azimuth antenna pattern and the backscattering coefficient as function of the look angle. The antenna pattern estimation provides information about the target velocity; the backscattering coefficient can be used for vessel classification. The range velocity is retrieved in the slow time frequency domain by estimating the antenna pattern effects induced by the target motion, while the azimuth velocity is calculated by the estimated range velocity and the ship orientation. Finally, the algorithm is tested on simulated SAR SLC data.
Resumo:
This paper extents the by now classic sensor fusion complementary filter (CF) design, involving two sensors, to the case where three sensors that provide measurements in different bands are available. This paper shows that the use of classical CF techniques to tackle a generic three sensors fusion problem, based solely on their frequency domain characteristics, leads to a minimal realization, stable, sub-optimal solution, denoted as Complementary Filters3 (CF3). Then, a new approach for the estimation problem at hand is used, based on optimal linear Kalman filtering techniques. Moreover, the solution is shown to preserve the complementary property, i.e. the sum of the three transfer functions of the respective sensors add up to one, both in continuous and discrete time domains. This new class of filters are denoted as Complementary Kalman Filters3 (CKF3). The attitude estimation of a mobile robot is addressed, based on data from a rate gyroscope, a digital compass, and odometry. The experimental results obtained are reported.
Resumo:
This paper presents an ankle mounted Inertial Navigation System (INS) used to estimate the distance traveled by a pedestrian. This distance is estimated by the number of steps given by the user. The proposed method is based on force sensors to enhance the results obtained from an INS. Experimental results have shown that, depending on the step frequency, the traveled distance error varies between 2.7% and 5.6%.
Resumo:
This paper addresses the estimation of surfaces from a set of 3D points using the unified framework described in [1]. This framework proposes the use of competitive learning for curve estimation, i.e., a set of points is defined on a deformable curve and they all compete to represent the available data. This paper extends the use of the unified framework to surface estimation. It o shown that competitive learning performes better than snakes, improving the model performance in the presence of concavities and allowing to desciminate close surfaces. The proposed model is evaluated in this paper using syntheticdata and medical images (MRI and ultrasound images).
Resumo:
Dimensionality reduction plays a crucial role in many hyperspectral data processing and analysis algorithms. This paper proposes a new mean squared error based approach to determine the signal subspace in hyperspectral imagery. The method first estimates the signal and noise correlations matrices, then it selects the subset of eigenvalues that best represents the signal subspace in the least square sense. The effectiveness of the proposed method is illustrated using simulated and real hyperspectral images.
Resumo:
Lean Thinking is an important pillar in the success of any program of continuous improvement process. Its tools are useful means in the analysis, control and organization of important data for correct decision making in organizations. This project had as main objective the design of a program of quality improvement in Eurico Ferreira, S.A., based on the evaluation of customer satisfaction and the implementation of 5S. Subsequently, we have selected which business area of the company to address. After the selection, there was an initial diagnostic procedure, identifying the various points of improvement to which some tools of Lean Thinking have been applied, in particular Value Stream Mapping and 5S methodology. With the first, we were able to map the current state of the process in which all stakeholders were represented as well as the flow of materials and information throughout the process. The 5S methodology allowed to act on the wastage, identifying and implementing various process improvements.
Resumo:
As it is widely known, in structural dynamic applications, ranging from structural coupling to model updating, the incompatibility between measured and simulated data is inevitable, due to the problem of coordinate incompleteness. Usually, the experimental data from conventional vibration testing is collected at a few translational degrees of freedom (DOF) due to applied forces, using hammer or shaker exciters, over a limited frequency range. Hence, one can only measure a portion of the receptance matrix, few columns, related to the forced DOFs, and rows, related to the measured DOFs. In contrast, by finite element modeling, one can obtain a full data set, both in terms of DOFs and identified modes. Over the years, several model reduction techniques have been proposed, as well as data expansion ones. However, the latter are significantly fewer and the demand for efficient techniques is still an issue. In this work, one proposes a technique for expanding measured frequency response functions (FRF) over the entire set of DOFs. This technique is based upon a modified Kidder's method and the principle of reciprocity, and it avoids the need for modal identification, as it uses the measured FRFs directly. In order to illustrate the performance of the proposed technique, a set of simulated experimental translational FRFs is taken as reference to estimate rotational FRFs, including those that are due to applied moments.
Resumo:
Comunicação apresentada na 17ª Conferência Anual da Network of Intitutes and Schools of Public Administration (NISPA) em Birdua, Montenegro de 14 a 16 dem Maio de 2009.
Resumo:
Measuring the quality of a b-learning environment is critical to determine the success of a b-learning course. Several initiatives have been recently conducted on benchmarking and quality in e-learning. Despite these efforts in defining and examining quality issues concerning online courses, a defining instrument to evaluate quality is one of the key challenges for blended learning, since it incorporates both traditional and online instruction methods. For this paper, six frameworks for quality assessment of technological enhanced learning were examined and compared regarding similarities and differences. These frameworks aim at the same global objective: the quality of e-learning environment/products. They present different perspectives but also many common issues. Some of them are more specific and related to the course and other are more global and related to institutional aspects. In this work we collected and arrange all the quality criteria identified in order to get a more complete framework and determine if it fits our b-learning environment. We also included elements related to our own b-learning research and experience, acquired during more than 10 years of experience. As a result we have create a new quality reference with a set of dimensions and criteria that should be taken into account when you are analyzing, designing, developing, implementing and evaluating a b-learning environment. Besides these perspectives on what to do when you are developing a b-learning environment we have also included pedagogical issues in order to give directions on how to do it to reach the success of the learning. The information, concepts and procedures here presented give support to teachers and instructors, which intend to validate the quality of their blended learning courses.
Resumo:
Given an hyperspectral image, the determination of the number of endmembers and the subspace where they live without any prior knowledge is crucial to the success of hyperspectral image analysis. This paper introduces a new minimum mean squared error based approach to infer the signal subspace in hyperspectral imagery. The method, termed hyperspectral signal identification by minimum error (HySime), is eigendecomposition based and it does not depend on any tuning parameters. It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.
Resumo:
In hyperspectral imagery a pixel typically consists mixture of spectral signatures of reference substances, also called endmembers. Linear spectral mixture analysis, or linear unmixing, aims at estimating the number of endmembers, their spectral signatures, and their abundance fractions. This paper proposes a framework for hyperpsectral unmixing. A blind method (SISAL) is used for the estimation of the unknown endmember signature and their abundance fractions. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The proposed framework simultaneously estimates the number of endmembers present in the hyperspectral image by an algorithm based on the minimum description length (MDL) principle. Experimental results on both synthetic and real hyperspectral data demonstrate the effectiveness of the proposed algorithm.
Resumo:
A revision of several paths for the Quality journey is presented: from Quality Gurus and Total Quality Management (TQM) models to the ISO 9000 International Standards Series. Since ISO 9001:2008 is now in the revision process to the expected ISO 9001:2015 version, an analysis is made of he proposed changes and the underlying reasons and the impacts foreseen on the more than 1.3 Million certified organizations. This revision should be a step towards TQM and reflect the changes of an increasingly complex, demanding and dynamic environment, while assuring that complying organizations are able to provide conformity products and services that satisfy their customers. Major benefits are expected such as less emphasis on documentation and new/reinforced approaches: consideration of Organizational Context and (relevant) Stakeholders, Risk Based thinking and Knowledge Management.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Mestrado em Gestão Integrada da Qualidade, Ambiente e Segurança
Resumo:
We evaluated the components of the Fuenzalida-Palacios antirabies vaccine, which is till used in most developing countries in human immunization for treatment and prophylaxis. This vaccine is prepared from newborn mouse brains at 1% concentration. Even though the vaccine is considered to have a low myelin content, it is not fully free of myelin or of other undesirable components that might trigger adverse effects after vaccination. The most severe effect is a post-vaccination neuroparalytic accident associated with Guillain-Barré syndrome. In the present study we demonstrate how the vaccines produced and distributed by different laboratories show different component patterns with different degrees of impurity and with varying protein concentrations, indicating that production processes can vary from one laboratory to another. These differences, which could be resolved using a better quality control process, may affect and impair immunization, with consequent risks and adverse effects after vaccination. We used crossed immunoelectrophoresis to evaluate and demonstrate the possibility of quality control in vaccine production, reducing the risk factors possibly involved in these immunizing products.