1000 resultados para Lógica matemática -- Enseñanza
Resumo:
Este reporte trata sobre una investigación realizada en la Universidad de Camagüey que se planteó como objetivo la elaboración de un programa analítico de la asignatura álgebra lineal y geometría analítica para la carrera de Ingeniería Mecánica que permitiera elevar la eficiencia del mismo para la solución de problemas y tareas docentes por parte de los estudiantes. Los métodos empleados fueron tanto teóricos como empíricos, mediante ellos y a partir del problema considerado se constató que la concepción existente del Programa Analítico de la asignatura no es adecuado para asegurar el balance entre su nivel de generalización teórica y la solución de problemas con el consecuente desarrollo de habilidades prácticas profesionales e investigativas para garantizar el encargo social. En la investigación se demostró que la articulación teórica y práctica empleando el enfoque sistémico y la teoría de la actividad, permitió dar base teórica a la integración de los temas del álgebra lineal y geometría analítica. Además se rediseñó el programa de la asignatura y su aplicación contribuyó a elevar la eficiencia del proceso de enseñanza-aprendizaje de la misma.
Resumo:
El objetivo de este trabajo es mostrar algunos aspectos a considerar en el diseño de materiales didácticos basados en la utilización de las Nuevas Tecnologías de la Información y las Comunicaciones. Estos materiales soportados en formato electrónico serán utilizados para llevar a cabo la fase no presencial del curso de Matemática I y II para Ingenieros Informáticos en la modalidad semipresencial, que se iniciará en el mes de septiembre del 2002 en el Instituto Superior Politécnico “José Antonio Echeverría” de la ciudad de La Habana, Cuba, con una matrícula aproximada de mas de 600 alumnos, los cuales son maestros de computación en la enseñanza primaria.
Resumo:
En el campo de la investigación en educación matemática los cambios que en la enseñanza en general se han venido produciendo en los últimos tiempos, se manifiestan al asumir nuevos esquemas investigativos sustentados en una visión fenomenológica (Martínez 1997, 1999) del hecho educativo que comporta a su vez, nuevas formas de abordar el proceso de enseñanza y aprendizaje de la matemática bajo una concepción más comprensiva e integradora, donde hay más cabida para la pregunta, para el cuestionamiento, que para las certezas o la certidumbre. En esta comunicación revisamos las propuestas de Kilpatrick y Sierspinka (1996) y de González (2000), para la conformación de una agenda de investigación en educación matemática, orientándolas a la luz de las nuevas consideraciones teóricas–metodológicas que emergen en estos tiempos postmodernos. Asimismo, se plantea la necesidad de revisar los postgrados en Educación Matemática a fin de convertirlos en espacios para la reflexión, para la discusión y para la confrontación de saberes, propiciando la consolidación del binomio formación–investigación a través de la implementación de currículo menos escolarizados y más dirigidos a la práctica investigativa (Becerra, 2001). Por último, abogamos por la investigación sobre la enseñanza y el aprendizaje de la matemática, realizada por los profesores de matemática, en el propio entorno escolar siguiendo las utopías y renovaciones de Alcina (1998) y las concepciones epistemológicos, pedagógicos y didácticos que en la actualidad dirigen las actividades educativas (Gallegos Badillo y Pérez Miranda, 1991), enfocándolas a la enseñanza de la matemática.
Resumo:
Durante siglos se ha sostenido que la naturaleza está obligada a seguir ciertas reglas que conducen a estructuras basadas en la certeza, no debe extrañar, pues, que la matemática, y junto a ella prácticamente todas las ramas de la ciencia, se hayan apoyado en este principio, pero en unos sistemas sociales cada vez más complejos y mutantes resulta difícil imaginar que bastan esas reglas deterministas para explicar el mundo actual y predecir el futuro. En el año 1965 se inician los trabajos que permitieron el surgimiento de una nueva matemática, la matemática de la incertidumbre, enriquecida con el aporte de miles de investigadores en todo el mundo y que ha probado ampliamente su utilidad para abordar los nuevos problemas que se presentan en la actualidad. Los resultados de una búsqueda realizada en Internet arrojan que en un gran número de universidades e incluso en varios centros de enseñanza media superior se abordan los contenidos fundamentales de esta, también llamada matemática borrosa, sobre todo en Europa y América del Norte y principalmente en ingeniería y ciencias económicas. Este trabajo pretende tributar hacia el objetivo de comenzar a preocuparnos seriamente en nuestra región por la difusión de estos temas y su futura incorporación a planes y programas de estudios.
Resumo:
La educación es un derecho fundamental, cuya finalidad básica es el desarrollo humano, moral e intelectual de las personas que configuran la sociedad. Es necesario garantizar la igualdad en el acceso y en el desarrollo del derecho a la educación, resolviendo el problema del fracaso y abandono escolar, que afecta especialmente al alumnado que procede de las clases más desfavorecidas. En este sentido, la educación –en su condición de universal, pública y gratuita– se convirtió en un pilar del Estado de Bienestar clave para poder cohesionar una sociedad compleja y multicultural, encargándose de compensar los desequilibrios y desigualdades que el sistema económico pudiera generar por su propio funcionamiento. No obstante, se considera que en el momento a partir del cual la lógica neoliberal se hizo predominante en la economía mundial, la educación no quedó al margen, viéndose afectada tanto en la definición de sus objetivos como en el papel que dentro de ella quedaba reservado para el Sector Público, así como para los demás agentes que intervenían en ella. Todo este proceso ha venido marcado, a su vez, por el desencadenamiento de la crisis económica internacional de 2008. Por otro lado, los países de la UE-15 comparten la existencia de una educación obligatoria, que abarca entre diez y doce cursos, junto con la gratuidad de esta enseñanza en los centros de titularidad pública. No obstante, los países difieren en dos principales rasgos de sus modelos de financiación: el grado de descentralización de sus sistemas educativos y la existencia o no de subvenciones a los centros de titularidad privada. España, con un sistema educativo descentralizado desde el año 2000, representa un caso singular dentro del panorama internacional en lo referente a su red de centros privados, bajo regulación estatal, a los que se transfieren fondos públicos a través de los denominados conciertos educativos. A su vez, la descentralización regional de la gestión educativa supuso el traspaso de las funciones y servicios a las Comunidades Autónomas, de forma que estas pasaron a ser las principales responsables de la asignación del gasto en educación...
Resumo:
Recibido 02 de setiembre de 2011 • Aceptado 23 de febrero de 2012 • Corregido 21 de marzo de 2012 La enseñanza de las Matemáticas se ha visto influenciada por la presencia de ciertos estereotipos que han determinado el comportamiento y afectado el rendimiento del estudiantado en dicha disciplina. Diversas investigaciones han señalado la relación de inequidad que hombres y mujeres poseen respecto a las matemáticas y la responsabilidad que el profesorado tiene en su construcción. Por tal motivo se plantea la necesidad de llevar a cabo acciones concretas que permitan la construcción de relaciones de equidad en dicha disciplina, basadas en los principios de respeto, solidaridad y ayuda mutua entre los géneros.
Resumo:
This work approaches the forced air cooling of strawberry by numerical simulation. The mathematical model that was used describes the process of heat transfer, based on the Fourier's law, in spherical coordinates and simplified to describe the one-dimensional process. For the resolution of the equation expressed for the mathematical model, an algorithm was developed based on the explicit scheme of the numerical method of the finite differences and implemented in the scientific computation program MATLAB 6.1. The validation of the mathematical model was made by the comparison between theoretical and experimental data, where strawberries had been cooled with forced air. The results showed to be possible the determination of the convective heat transfer coefficient by fitting the numerical and experimental data. The methodology of the numerical simulations was showed like a promising tool in the support of the decision to use or to develop equipment in the area of cooling process with forced air of spherical fruits.
Resumo:
A base-cutter represented for a mechanism of four bars, was developed using the Autocad program. The normal force of reaction of the profile in the contact point was determined through the dynamic analysis. The equations of dynamic balance were based on the laws of Newton-Euler. The linkage was subject to an optimization technique that considered the peak value of soil reaction force as the objective function to be minimized while the link lengths and the spring constant varied through a specified range. The Algorithm of Sequential Quadratic Programming-SQP was implemented of the program computational Matlab. Results were very encouraging; the maximum value of the normal reaction force was reduced from 4,250.33 to 237.13 N, making the floating process much less disturbing to the soil and the sugarcane rate. Later, others variables had been incorporated the mechanism optimized and new otimization process was implemented .
Resumo:
One of the effects of the globalized world is a strong tendency to eliminate differences, promoting a planetary culture. Education systems are particularly affected, undergoing strong pressure from international studies and evaluations, inevitably comparative, and sadly competitive. As a result, one observes the gradual elimination of cultural components in the definition of education systems. The constitution of new social imaginaries becomes clear; imaginaries empty of historical, geographical and temporal referents, characterized by a strong presence of the culture of the image. The criteria of classification establish an inappropriate reference that has as its consequence the definition of practices and even of education systems. On the other hand, resistance mechanisms, often unconscious, are activated seeking to safeguard and recover the identifying features of a culture, such as its traditions, cuisine, languages, artistic manifestations in general, and, in doing so, to contribute to cultural diversity, an essential factor to encourage creativity. In this article, the sociocultural basis of mathematics and of its teaching are examined, and also the consequences of globalization and its effects on multicultural education. The concept of culture is discussed, as well as issues related to culture dynamics, resulting in the proposition of a theory of transdisciplinar and transcultural knowledge. Upon such basis the Ethnomathematics Program is presented. A critique is also made of the curriculum presently used, which is in its conception and detailing, obsolete, uninteresting and of little use. A different concept of curriculum is proposed, based on the communicative (literacy), analytical (matheracy), and material (technoracy) instruments.
Resumo:
We present and discuss in this article some features of a research program whose central object of investigation is the way in which the recent fields of history, philosophy, and sociology of mathematical education could take part in a critical and qualified manner in the initial and continuing training of teachers in this area. For that, we endorse the viewpoint that the courses for mathematics teacher education should be based on a conception of specificity through which a new pedagogical project could be established. In such project those new fields of investigation would participate, in an organic and clarifying way, in the constitution of multidimensional problematizations of school practices, in which mathematics would be involved, and that would be guided by academic investigations about the issues that currently challenge teachers in the critical work of incorporation, resignification, production, and transmission of mathematical culture in the context of the school institution.
Resumo:
Este artigo traz uma reflexão acerca da avaliação em Matemática, destacando os modos pelos quais essa avaliação pode vir a ser compreendida e discutida em um curso de formação de professores da área. Explicita-se como, a partir das situações de sala de aula, o olhar para as possibilidades da avaliação pode contribuir para a formação desse professor no que diz respeito ao compreendido pelos alunos. São analisadas três situações-problema, propostas aos alunos do curso de graduação em Matemática, cujo foco é o modo de avaliar. O olhar avaliativo e o fazer Matemática são entendidos como uma forma de o aluno voltar-se para o conteúdo matemático, abrindo-se ao que, no seu lidar cotidiano, se mostra. Diz-se da importância de se considerarem os "dados relevantes" e o "a ser conhecido" nas situações de avaliação que permitem, ao professor, ler a aprendizagem do aluno em seu modo de se expressar.
Resumo:
As fêmeas bovinas, por sua importância na transmissão e na manutenção da brucelose, constituíram o alvo dos inquéritos do Programa Nacional de Controle e Erradicação da Brucelose e da Tuberculose Animal. Com base em informações obtidas em unidades federativas onde foram realizados inquéritos sorológicos e observadas prevalências de animais acima de 2%, elaborou-se um modelo para simular a dinâmica da brucelose em rebanhos bovinos formados exclusivamente por fêmeas, analisando o efeito de estratégias de vacinação. Para baixa cobertura vacinal, da ordem de 30%, o tempo para reduzir a prevalência a 2%, valor adotado como referência, pode ser longo, aproximando-se do dobro do tempo necessário para uma cobertura mais alta, de 90%. De acordo com o modelo, o tempo para reduzir a prevalência a 1% ou 2%, que permitam passar à fase de erradicação, pode chegar a uma década. Recomenda-se a intensificação do esforço para a vacinação de fêmeas, procurando atingir alta cobertura vacinal.
Resumo:
This article presents the results of a study that investigated the meaning of evaluation in mathematics from the historical cultural perspective, focusing on activity theory. In order to develop the investigation, a collaborative group was formed from the Oficina Pedagogica de Matematica de Ribeirao Preto - Sao Paulo (Math Pedagogic Workshop of Ribeirao Preto - OPM/RP), constituted of pre-school teachers and early elementary school teachers, who were participants in this research. The main role of the collaborative group was to offer guided development to the teachers about the teaching of mathematics from the historical-cultural perspective, aiming at collecting data on the process of appropriation of mathematical knowledge by the teachers. The syntheses about the teachers' learning process have contributed to systematize the guiding elements of evaluation in mathematics from the historical-cultural perspective.
Resumo:
Based on a survey of summaries of courses on the Foundations of Mathematics, from Mathematics Teacher Education programs in the southern part of Brazil, and some remarks on the legislation related to the course syllabuses, we discuss the meaning of the word ""Foundations"" in order to reflect on the proposals of these issues in the courses, which will be undergoing reformulation. The opinions of students in one of these courses regarding the meaning of the term ""foundations"", as well as the data obtained from the survey and the remarks regarding legislation, may lead to considerations about the possibilities for a better qualification of the initial education of Mathematics teachers.
Resumo:
The goal of this paper is to show the diffusion, reception, and utilization of Omar Catunda's book Course of Mathematical Analysis for mathematics and engineering teaching in Brazilian universities, e. g., University of Sao Paulo and the University of Bahia from 1950 to 1976. We used interviews of some ex-alumni or users of his book. We also present some signs of the influence of his book and of Catunda himself at University of Rio Grande do Sul. We argue that Catunda and his book were important agents of process of modernizing the teaching of calculus and analysis, through his classes as well as his book.