864 resultados para Ion absorption
Resumo:
We present mid-infrared (mid-IR) spectra of the Compton-thick Seyfert 2 galaxy NGC 3281, obtained with the Thermal-Region Camera Spectrograph at the Gemini-South telescope. The spectra present a very deep silicate absorption at 9.7 mu m, and [S IV] 10.5 mu m and [Ne II] 12.7 mu m ionic lines, but no evidence of polycyclic aromatic hydrocarbon emission. We find that the nuclear optical extinction is in the range 24 mag <= A(V) <= 83 mag. A temperature T = 300 K was found for the blackbody dust continuum component of the unresolved 65 pc nucleus and the region at 130 pc SE, while the region at 130 pc NW reveals a colder temperature (200 K). We describe the nuclear spectrum of NGC 3281 using a clumpy torus model that suggests that the nucleus of this galaxy hosts a dusty toroidal structure. According to this model, the ratio between the inner and outer radius of the torus in NGC 3281 is R(0)/R(d) = 20, with 14 clouds in the equatorial radius with optical depth of tau(V) = 40 mag. We would be looking in the direction of the torus equatorial radius (i = 60 degrees), which has outer radius of R(0) similar to 11 pc. The column density is N(H) approximate to 1.2 x 10(24) cm(-2) and the iron K alpha equivalent width (approximate to 0.5-1.2 keV) is used to check the torus geometry. Our findings indicate that the X-ray absorbing column density, which classifies NGC 3281 as a Compton-thick source, may also be responsible for the absorption at 9.7 mu m providing strong evidence that the silicate dust responsible for this absorption can be located in the active galactic nucleus torus.
Resumo:
Three species of phylogenetically related semi-terrestrial crabs (Superfamily Grapsoidea - Sesarma rectum, Goniopsis cruentata and Neohelice granulata (formerly: Chasmagnathus granulatus) with different degrees of terrestriality were studied to quantify the accumulation of copper (Cu) in hemolymph, gills, hepatopancreas and antennal gland, and its excretion through the faeces. These crabs were fed for 15 days practical diets containing 0 (A), 0.5 (B), 1.0 (C), and 1.5% (D) of added CuCl2 (corresponding to 0, 0.2, 0.5 and 0.7% of Cu2+, respectively). The amount of food ingested was directly proportional to the degree of terrestriality: S. rectum, the most terrestrial species, ate around 2-3 times more than the other crabs, whereas G. cruentata ate 1.5-2 times more than N. granulata, the least terrestrial. The amount of Cu excreted in the feces was proportional to Cu ingestion, and was 76.8% and 64.2% higher for Sesarma fed diet D compared to G. cruentata and N. granulata, respectively. Sesarma also displayed higher Cu concentration in the haemolymph, gills and antennal glands, but not in the hepatopancreas. A detoxifying mechanism followed by elimination was probably present at this last organ, preventing Cu accumulation. More terrestrial crabs, such as Sesarma, may accumulate more Cu in hemolymph and tissues, showing a correlation between metal accumulation and increased terrestriality. In this aspect, contaminated feed sources with Cu may have more impact in conservation of terrestrial crabs. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Little is known about insect intestinal sugar absorption, in spite of the recent findings, and even less has been published regarding water absorption. The aim of this study was to shed light on putative transporters of water and glucose in the insect midgut Glucose and water absorptions by the anterior ventriculus of Dysdercus peruvianus midgut were determined by feeding the insects with a glucose and a non-absorbable dye solution, followed by periodical dissection of insects and analysis of ventricular contents. Glucose absorption decreases glucose/dye ratios and water absorption increases dye concentrations. Water and glucose transports are activated (water 50%, glucose 33%) by 50 mM K(2)SO(4) and are inhibited (water 46%, glucose 82%) by 0.2 mM phloretin, the inhibitor of the facilitative hexose transporter (GLUT) or are inhibited (water 45%, glucose 35%) by 0.1 mM phlorizin, the inhibitor of the Na(+)-glucose cotransporter (SGLT). The results also showed that the putative SGLT transports about two times more water relative to glucose than the putative GLUT. These results mean that D. peruvianus uses a GLUT-like transporter and an SGLT-like transporter (with K(+) instead of Na(+)) to absorb dietary glucose and water. A cDNA library from D. peruvianus midgut was screened and we found one sequence homologous to GLUT1, named DpGLUT, and another to a sodium/solute symporter, named DpSGLT. Semi-quantitative RT-PCR studies revealed that DpGLUT and DpSGLTs mRNA were expressed in the anterior midgut, where glucose and water are absorbed, but not in fat body, salivary gland and Malpighian tubules. This is the first report showing the involvement of putative GLUT and SGLT in both water and glucose midgut absorption in insects. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 mu M and 10 mu M of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 mu M concentrations. Comparing control and REN concentration of 1 mu M, JHCO(3)(-) . nmol cm(-2) s(-1) -1,76 +/- 0.11(control) x 1,29 +/- 0,08(REN) 10 mu m: P<0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 mu M (JHCO(3)(-), nmol cm(-2) s(-1) -0.80 +/- 0.07(control) x 0.60 +/- 0.06(REN) 1 mu m; P<0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na(+)/H(+) exchanger and H(+)-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: To assess the comparative bioavailability of two formulations (250 mg/5 mL suspension) of cefuroxime axetil (CAS 64544-07-6), administered with food, in healthy volunteers of both sexes. Methods: The study was conducted using an open, randomized, two-period crossover design with a 1-week washout interval. Plasma samples were obtained for up to 12 h post dose. Plasma cefuroxime axetil concentrations were analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS-MS) with negative ion electrospray ionization using multiple reactions monitoring (MRM). From the cefuroxime axetil plasma concentration vs. time curves, the following pharmacokinetic parameters were obtained: AUC(last) and C(max). Results: The limit of quantification was 0.1 mu g/mL for plasma cefuroxime axetil analysis. The geometric mean and 90% confidence interval CI of test/reference product percent ratios were: 106.1% (100.8%-111.8%) for C(max), 109.4% (104.8%-114.2%) for AUC(last). Conclusion: Since the 90% Cl for AUC(last) and C(max) ratios were within the 80-125 % interval proposed by the US FDA, it was concluded that cefuroxime axetil (test formulation, 250 mg/5 mL suspension) was bioequivalent to a reference formulation under fed conditions, for both the rate and extent of absorption.
Resumo:
Cultures of cosmomycin D-producing Streptomyces olindensis ICB20 that were propagated for many generations underwent mutations that resulted in production of a range of related anthracyclines by the bacteria. The anthracyclines that retained the two trisaccharide chains of the parent compound were separated by HPLC. Exact mass determination of these compounds revealed that they differed from cosmomycin D (CosD) in that they contained one to three fewer oxygen atoms (loss of hydroxyl groups). Some of the anthracyclines that were separated by HPLC had the same mass. The location from which the hydroxyl groups had been lost relative to CosD (on the aglycone and/or on the sugar residues) was probed by collisionally-activated dissociation using an electrospray ionisation linear quadrupole ion trap mass spectrometer. The presence of anthracyclines with the same mass, but different structure, was confirmed using an electrospray ionisation travelling wave ion mobility mass spectrometer.
Resumo:
Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide`s primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
The authors present here a summary of their investigations of ultrathin films formed by gold nanoclusters embedded in polymethylmethacrylate polymer. The clusters are formed from the self-organization of subplantated gold ions in the polymer. The source of the low energy ion stream used for the subplantation is a unidirectionally drifting gold plasma created by a magnetically filtered vacuum arc plasma gun. The material properties change according to subplantation dose, including nanocluster sizes and agglomeration state and, consequently also the material electrical behavior and optical activity. They have investigated the composite experimentally and by computer simulation in order to better understand the self-organization and the properties of the material. They present here the results of conductivity measurements and percolation behavior, dynamic TRIM simulations, surface plasmon resonance activity, transmission electron microscopy, small angle x-ray scattering, atomic force microscopy, and scanning tunneling microscopy. (C) 2010 American Vacuum Society [DOI: 10.1116/1.3357287]
Resumo:
The aerosol spectral absorption efficiency (alpha(a) in m(2)/g) is measured over an extended wavelength range (350-2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha(a) values (similar to 3m(2)/g at 550 nm) for Sao Paulo samples are 10 times larger than a a values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space. Citation: Martins, J.V., P. Artaxo, Y.J. Kaufman, A.D. Castanho, and L.A. Remer (2009), Spectral absorption properties of aerosol particles from 350-2500nm, Geophys. Res. Lett., 36, L13810, doi: 10.1029/2009GL037435.
Resumo:
Al(2)O(3):Eu(3+)(1%) samples were prepared by combustion, ceramic, and Pechini methods annealed from 400 to 1400 degrees C. XRD patterns indicate that samples heated up to 1000 degrees C present disordered character of activated alumina (gamma-Al(2)O(3)). However, alpha-Al(2)O(3) phase showed high crystallinity and thermostability at 1200-1400 degrees C. The sample characterizations were also carried out by means of infrared spectroscopy (IR), scanning electron microscopy (SEM) and specific surface areas analysis (BET method). Excitation spectra of Al(2)O(3):Eu(3+) samples present broaden bands attributed to defects of Al(2)O(3) matrices and to LMCT state of O -> Eu(3+), however, the narrow bands are assigned to (7)F(0) -> (5)D(J),(5)H(J) and (5)L(J) transitions of Eu(3+) ion. Emission spectra of samples calcined up to 1000 degrees C show broaden bands for (5)D(0) -> (7)F(J) transitions of Eu(3+) ion suggesting that the rare earth ion is in different symmetry sites showed by inhomogeneous line broadening of bands, confirming the predominance of the gamma-alumina phase. For all samples heated from 1200 to 1400 degrees C the spectra exhibit narrow (5)D(0) -> (7)F(J) transitions of Eu(3+) ion indicating the conversion of gamma to alpha-Al(2)O(3) phases, a high intensity narrow peak around 695 nm assigned to R lines of Cr(3+) ion is shown. Al(2)O(3):Eu(3+) heated up to 1100 degrees C presents an increase in the Omega(2) intensity parameter with the increase of temperatures enhancing the covalent character of metal-donor interaction. The disordered structural systems present the highest values of emission quantum efficiencies (eta). CIE coordinates of Al(2)O(3):Eu(3+) are also discussed. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The exclusive processes in electron-ion (eA) interactions are an important tool to investigate the QCD dynamics at high energies as they are in general driven by the gluon content of the target which is strongly subject to parton saturation effects. In this Letter we compute the cross sections for the exclusive vector meson production as well as the deeply virtual Compton scattering (DVCS) relying on the color dipole approach and considering the numerical solution of the Balitsky-Kovchegov equation including running coupling corrections (rcBK). The production cross sections obtained with the rcBK solution and bCGC parametrization are very similar, the former being slightly larger. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study the production of D (sJ) (2317) mesons in relativistic heavy ion collisions using the quark coalescence model. The predicted D (sJ) (2317) abundance depends sensitively on the quark structure of the D (sJ) (2317) meson. We have also evaluated the absorption cross sections of the D (sJ) (2317) meson by pi, rho, kaon and K* in a phenomenological hadronic model. We find that the final yield of D (sJ) (2317) mesons remains sensitive to its initial number produced from the quark-gluon plasma, providing thus the possibility of studying the quark structure of the D (sJ) (2317) meson and its production mechanism in relativistic heavy ion collisions.
Resumo:
The absorption spectrum of the acid form of pterin in water was investigated theoretically. Different procedures using continuum, discrete, and explicit models were used to include the solvation effect on the absorption spectrum, characterized by two bands. The discrete and explicit models used Monte Carlo simulation to generate the liquid structure and time-dependent density functional theory (B3LYP/6-31G+(d)) to obtain the excitation energies. The discrete model failed to give the correct qualitative effect on the second absorption band. The continuum model, in turn, has given a correct qualitative picture and a semiquantitative description. The explicit use of 29 solvent molecules, forming a hydration shell of 6 angstrom, embedded in the electrostatic field of the remaining solvent molecules, gives absorption transitions at 3.67 and 4.59 eV in excellent agreement with the S(0)-S(1) and S(0)-S(2) absorption bands at of 3.66 and 4.59 eV, respectively, that characterize the experimental spectrum of pterin in water environment. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2371-2377, 2010
Resumo:
We address the effect of solvation on the lowest electronic excitation energy of camphor. The solvents considered represent a large variation in-solvent polarity. We consider three conceptually different ways of accounting for the solvent using either an implicit, a discrete or an explicit solvation model. The solvatochromic shifts in polar solvents are found to be in good agreement with the experimental data for all three solvent models. However, both the implicit and discrete solvation models are less successful in predicting solvatochromic shifts for solvents of low polarity. The results presented suggest the importance of using explicit solvent molecules in the case of nonpolar solvents. (C) 2009 Elsevier B.V. All rights reserved.