898 resultados para Infection opportuniste
Resumo:
Cell adhesion molecules (CAMs) are surface receptors present in eukaryotic cells that mediate cell-cell or cell-extracellular matrix interactions. Vascular endothelium stimulation in vitro that lead to the upregulation of CAMs was reported for the pathogenic spirochaetes, including rLIC10365 of Leptospira interrogans. In this study, we report the cloning of LIC10507, LIC10508, LIC10509 genes of L interrogans using Escherichia coli as a host system. The rational for selecting these sequences is due to their location in L. interrogans serovar Copenhageni genome that has a potential involvement in pathogenesis. The genes encode for predicted lipoproteins with no assigned functions. The purified recombinant proteins were capable to promote the upregulation of intercellular adhesion molecule 1 (ICAM-1) and E-selectin on monolayers of human umbilical vein endothelial cells (HUVECS). In addition, the coding sequences are expressed in the renal tubules of animal during bacterial experimental infection. The proteins are probably located at the outer membrane of the bacteria since they are detected in detergent-phase of L interrogans Triton X-114 extract. Altogether our data suggest a possible involvement of these proteins during bacterial infection and provide new insights into the role of this region in the pathogenesis of Leptospira. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A comparison of dengue virus (DENV) antibody levels in paired serum samples collected from predominantly DENV-naive residents in an agricultural settlement in Brazilian Amazonia (baseline seroprevalence, 18.3%) showed a seroconversion rate of 3.67 episodes/100 person-years at risk during 12 months of follow-up. Multivariate analysis identified male sex, poverty, and migration from extra-Amazonian states as significant predictors of baseline DENY seropositivity, whereas male sex, a history of clinical diagnosis of dengue fever, and travel to an urban area predicted subsequent seroconversion. The laboratory surveillance of acute febrile illnesses implemented at the study site and in a nearby town between 2004 and 2006 confirmed 11. DENV infections among 102 episodes studied with DENV IgM detection, reverse transcriptase-polymerise chain reaction, and virus isolation; DENV-3 was isolated. Because DENV exposure is associated with migration or travel, personal protection measures when visiting high-risk urban areas may reduce the incidence of DENV infection in this rural population.
Resumo:
The host defense mechanism in chromoblastomycosis has not been thoroughly investigated. It has been suggested that cell- mediated immunity in patients with long- standing chromoblastomycosis is somehow impaired. As a result, these individuals became unable to develop an efficient immune reaction. Many studies have shown that monocyte- derived macrophages exhibit critical activities in immunity to microorganisms. Moreover, the ability of cells from the monocytic lineage to process and present antigens, to produce cytokines, and to provide costimulatory signals confirms their pivotal role in the initiation of specific immune responses. In the present study, it was observed that monocytes from patients with a severe form of disease had a higher production of IL- 10 and a lower expression of HLA- DR and costimulatory molecules when stimulated with specific antigen or LPS. Immune modulation with recombinant IL- 12 or anti- IL- 10 can restore the antigen- specific Th1- type immune response in chromoblastomycosis patients by up- regulating HLA- DR and costimulatory molecules in monocytes. Therefore, our data show that monocytes from patients with different clinical forms of chromoblastomycosis present distinct phenotypic and functional profiles. This observation suggests possible mechanisms that control the T cell response and influence their role in the development of pathology.
Resumo:
Parasites of wild primates are important for conservation biology and human health due to their high potential to infect humans. In the Amazon region, non-human primates are commonly infected by Trypanosoma cruzi and T rangeli, which are also infective to man and several mammals. This is the first survey of trypanosomiasis in a critically endangered species of tamarin, Saguinus bicolor (Callitrichidae), from the Brazilian Amazon Rainforest. Of the 96 free-ranging specimens of S. bicolor examined 45 (46.8%) yielded blood smears positive for trypanosomes. T rangeli was detected in blood smears of 38 monkeys (39.6%) whereas T. cruzi was never detected. Seven animals (7.3%) presented trypanosomes of the subgenus Megatrypanum. Hemocultures detected 84 positive tamarins (87.5%). Seventy-two of 84 (85.7%) were morphologically diagnosed as T rangeli and 3 (3.1%) as T. cruzi. Nine tamarins (9.4%) yielded mixed cultures of these two species, which after successive passages generated six cultures exclusively of T. cruzi and two of T rangeli, with only one culture remaining mixed. Of the 72 cultures positive for T rangeli, 62 remained as established cultures and were genotyped: 8 were assigned to phylogenetic lineage A (12.9%) and 54 to lineage B (87.1%). Ten established cultures of T. cruzi were genotyped as TCI lineage (100%). Transmission of both trypanosome species, their potential risk to this endangered species and the role of wild primates as reservoirs for trypanosomes infective to humans are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Innate immunity is based in pre-existing elements of the immune system that directly interact with all types of microbes leading to their destruction or growth inhibition. Several elements of this early defense mechanism act in concert to control initial pathogen growth and have profound effect on the adaptative immune response that further develops. Although most studies in paracoccidioidomycosis have been dedicated to understand cellular and humoral immune responses, innate immunity remains poorly defined. Hence, the main purpose of this review is to present and discuss some mechanisms of innate immunity developed by resistant and susceptible mice to Paracoccidioides brasiliensis infection, trying to understand how this initial host-pathogen interface interferes with the protective or deleterious adaptative immune response that will dictate disease outcome. An analysis of some mechanisms and mediators of innate immunity such as the activation of complement proteins, the microbicidal activity of natural killer cells and phagocytes, the production of inflammatory eicosanoids, cytokines, and chemokines among others, is presented trying to show the important role played by innate immunity in the host response to P. brasiliensis infection.
Resumo:
Blood examination by microhaematocrit and haemoculture of 459 snakes belonging to 37 species revealed 24% trypanosome prevalence in species of Viperidae (Crotalus durissus and Bothrops jararaca) and Colubridae (Pseudoboa nigra). Trypanosome cultures from C. durissus and P. nigra were behaviourally and morphologically indistinguishable. In addition, the growth and morphological features of a trypanosome from the sand fly Viannaniyia tuberculata were similar to those of snake isolates. Cross-infection experiments revealed a lack of host restriction, as snakes of 3 species were infected with the trypanosome from C. durissus. Phylogeny based on ribosomal sequences revealed that snake trypanosomes clustered together with the sand fly trypanosome, forming a new phylogenetic lineage within Trypanosoma closest to a clade of lizard trypanosomes transmitted by sand flies dagger. The clade of trypanosomes from snakes and lizards suggests an association between the evolutionary histories of these trypanosomes and their squamate hosts. Moreover, data strongly indicated that these trypanosomes are transmitted by sand flies. The flaws of the current taxonomy of snake trypanosomes are discussed, and the need for molecular parameters to be adopted is emphasized. To our knowledge, this is the first molecular phylogenetic study of snake trypanosomes.
Resumo:
Forty Cryptococcus gattii strains were submitted to antifungal susceptibility testing with fluconazole, itraconazole, amphotericin B and terbinafine. The minimum inhibitory concentration (MIC) ranges were 0.5-64.0 for fluconazole, < 0.015-0.25 for itraconazole, 0.015-0.5 for amphotericin B and 0.062-2.0 for terbinafine. A bioassay for the quantitation of fluconazole in murine brain tissue was developed. Swiss mice received daily injections of the antifungal, and their brains were withdrawn at different times over the 14-day study period. The drug concentrations varied from 12.98 to 44.60 mu g/mL. This assay was used to evaluate the therapy with fluconazole in a model of infection caused by C. gattii. Swiss mice were infected intracranially and treated with fluconazole for 7, 10 or 14 days. The treatment reduced the fungal burden, but an increase in fungal growth was observed on day 14. The MIC for fluconazole against sequential isolates was 16 mu g/mL, except for the isolates obtained from animals treated for 14 days (MIC = 64 mu g/mL). The quantitation of cytokines revealed a predominance of IFN-gamma and IL-12 in the non-treated group and elevation of IL-4 and IL-10 in the treated group. Our data revealed the possibility of acquired resistance during the antifungal drug therapy.
Resumo:
The Duffy binding protein of Plasmodium vivax (DBP) is a critical adhesion ligand that participates in merozoite invasion of human Duffy-positive erythrocytes. A small outbreak of P. vivax malaria, in a village located in a non-malarious area of Brazil, offered us an opportunity to investigate the DBP immune responses among individuals who had their first and brief exposure to malaria. Thirty-three individuals participated in the five cross-sectional surveys, 15 with confirmed P. vivax infection while residing in the outbreak area (cases) and 18 who had not experienced malaria (non-cases). In the present study, we found that only 20% (three of 15) of the individuals who experienced their first P. vivax infection developed an antibody response to DBP; a secondary boosting can be achieved with a recurrent P. vivax infection. DNA sequences from primary/recurrent P. vivax samples identified a single dbp allele among the samples from the outbreak area. To investigate inhibitory antibodies to the ligand domain of the DBP (cysteine-rich region II, DBP(II)), we performed in vitro assays with mammalian cells expressing DBP(II) sequences which were homologous or not to those from the outbreak isolate. In non-immune individuals, the results of a 12-month follow-up period provided evidence that naturally acquired inhibitory antibodies to DBP(II) are short-lived and biased towards a specific allele.
Resumo:
Patients and methods: Clinical data from all patients admitted with acute respiratory failure due to novel viral H1N1 infection were reviewed. Lung tissue was submitted for viral and bacteriological analyses by real-time RT-PCR, and autopsy was conducted on all patients who died. Results: Eight patients were admitted, with ages ranging from 55 to 65 years old. There were five patients with solid organ tumors (62.5%) and three with hematological malignancies (37.5%). Five patients required mechanical ventilation and all died. Four patients had bacterial bronchopneumonia. All deaths occurred due to multiple organ failure. A milder form of lung disease was present in the three cases who survived. Lung tissue analysis was performed in all patients and showed diffuse alveolar damage in most patients. Other lung findings were necrotizing bronchiolitis or extensive hemorrhage. Conclusions: H1N1 viral infection in patients with cancer can cause severe illness, resulting in acute respiratory distress syndrome and death. More data are needed to identify predictors of unfavorable evolution in these patients.
Resumo:
Hepatitis C virus (HCV), exhibits considerable genetic diversity, but presents a relatively well conserved 5 ` noncoding region (5 ` NCR) among all genotypes. In this study, the structural features and translational efficiency of the HCV 5 ` NCR sequences were analyzed using the programs RNAfold, RNAshapes and RNApdist and with a bicistronic dual luciferase expression system, respectively. RNA structure prediction software indicated that base substitutions will alter potentially the 5 ` NCR structure. The heterogeneous sequence observed on 5 ` NCR led to important changes in their translation efficiency in different cell culture lines. Interactions of the viral RNA with cellular transacting factors may vary according to the cell type and viral genome polymorphisms that may result in the translational efficiency observed. J. Med. Virol. 81: 1212-1219, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
A high incidence of waterborne diseases is observed worldwide and in order to address contamination problems prior to an outbreak, quantitative microbial risk assessment is a useful tool for estimating the risk of infection. The objective of this paper was to assess the probability of Giardia infection from consuming water from shallow wells in a peri-urban area. Giardia has been described as an important waterborne pathogen and reported in several water sources, including ground waters. Sixteen water samples were collected and examined according to the US EPA (1623, 2005). A Monte Carlo method was used to address the potential risk as described by the exponential dose response model. Giardia cysts occurred in 62.5% of the samples (0.1-36.1 cysts/l). A median risk of 10-1 for the population was estimated and the adult ingestion was the highest risk driver. This study illustrates the vulnerability of shallow well water supply systems in peri-urban areas.
Resumo:
Objectives: Human papillomavirus (HPV) infection is a major risk factor for cervical disease. Using baseline data from the HIV-infected cohort of Evandro Chagas Clinical Research Institute at Fiocruz, Rio de Janeiro, Brazil, factors associated with an increased prevalence of HPV were assessed. Methods: Samples from 634 HIV-infected women were tested for the presence of HPV infection using hybrid capture 11 and polymerase chain reaction. Prevalence ratios (PR) were estimated using Poisson regression analysis with robust variance. Results: The overall prevalence of HPV infection was 48%, of which 94% were infected with a high-risk HPV. In multivariate analysis, factors independently associated with infection with high-risk HPV type were: younger age (<30 years of age; PR 1.5, 95% confidence interval (CI) 1.1-2.1), current or prior drug use (PR 1.3, 95% CI 1.0-1.6), self-reported history of HPV infection (PR 1.2, 95% CI 0.96-1.6), condom use in the last sexual intercourse (PR 1.3, 95% CI 1.1-1.7), and nadir CD4+ T-cell count <100 cells/mm(3) (PR 1.6, 95% CI 1.2-2.1). Conclusions: The estimated prevalence of high-risk HPV-infection among HIV-infected women from Rio de Janeiro, Brazil, was high. Close monitoring of HPV-related effects is warranted in all HIV-infected women, in particular those of younger age and advanced immunosuppression. (C) 2008 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Resumo:
Trypanosoma cruzi is a protozoan parasite that infects vertebrates, causing in humans a pathological condition known as Chagas` disease. The infection of host cells by T. cruzi involves a vast collection of molecules, including a family of 85 kDa GPI-anchored glycoproteins belonging to the gp85/trans-sialidase superfamily, which contains a conserved cell-binding sequence (VTVXNVFLYNR) known as FLY, for short. Herein, it is shown that BALB/c mice administered with a single dose (1 mu g/animal, intraperitoneally) of FLY-synthetic peptide are more susceptible to infection by T. cruzi, with increased systemic parasitaemia (2-fold) and mortality. Higher tissue parasitism was observed in bladder (7.6-fold), heart (3-fold) and small intestine (3.6-fold). Moreover, an intense inflammatory response and increment of CD4(+) T cells (1.7-fold) were detected in the heart of FLY-primed and infected animals, with a 5-fold relative increase of CD4(+)CD25(+)FoxP3(+) T (Treg) cells. Mice treated with anti-CD25 antibodies prior to infection, showed a decrease in parasitaemia in the FLY model employed. In conclusion, the results suggest that FLY facilitates in vivo infection by T. cruzi and concurs with other factors to improve parasite survival to such an extent that might influence the progression of pathology in Chagas` disease.
Resumo:
The ruthenium NO donors of the group trans-[Ru(NO)(NH(3))(4)L](n+), where the ligand (L) is N-heterocyclic H(2)O, SO(3)(2 -), or triethyl phosphite, are able to lyse Trypanosoma cruzi in vitro and in vivo. Using half-maximal (50%) inhibitory concentrations against bloodstream trypomastigotes (IC(50)(try)) and cytotoxicity data on mammalian V-79 cells (IC(50)(V79)), the in vitro therapeutic indices (TIs) (IC(50)(V79)/IC(50)(try)) for these compounds were calculated. Compounds that exhibited an in vitro TI of >= 10 and trypanocidal activity against both epimastigotes and trypomastigotes with an IC(50)(try/epi) of <= 100 mu M were assayed in a mouse model for acute Chagas` disease, using two different routes (intraperitoneal and oral) for drug administration. A dose-effect relationship was observed, and from that, the ideal dose of 400 nmol/kg of body weight for both trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) (isn, isonicotinamide) and trans-[Ru(NO)(NH3) 4imN](BF4) 3 (imN, imidazole) and median (50%) effective doses (ED50) of 86 and 190 nmol/kg, respectively, were then calculated. Since the 50% lethal doses (LD(50)) for both compounds are higher than 125 mu mol/kg, the in vivo TIs (LD(50)/ED(50)) of the compounds are 1,453 for trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and 658 for trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3). Although these compounds exhibit a marked trypanocidal activity and are able to react with cysteine, they exhibit very low activity in T. cruzi -glycosomal glyceraldehyde-3-phosphate dehydrogenase tests, suggesting that this enzyme is not their target. The trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) compounds are able to eliminate amastigote nests in myocardium tissue at 400-nmol/kg doses and ensure the survival of all infected mice, thus opening a novel set of therapies to try against trypanosomatids.
Resumo:
There are many viruses that are able to infect the alimentary tract of man. Little is known, however, about the mechanism of infection itself or the pathophysiology of the gut during infection. 'The research reported here is concerned with the differences in susceptibility among suckling mice of various ages inoculated by the intraperitoneal and intragastric routes. Since the normal mode of entry of many viruses to the gut is via the oral route, Coxsackievirus B5, a human enterovirus which does attack this way, was utilized. It is a non-tumor producing RNA virus that has been shown to act similarly in the mouse and human. The virus was pooled in HeLa cell cultures and titered by a plaquing assay in the same cell cultures. CD-l mice, 10, 14, 18, and 22 days old , were infected either orally or intraperitoneally with 5.0 x 10^10 (10 day old animals) and 1.0 x10^9 plaque forming units per animal. Dissections were done at 1 and 3 days post infection with samples of the blood, heart, liver, and gut being taken from each animal. Each sample was titered individually and the data presented as an average of six samples. As a result of previous work, it is known that the gut of a newborn mouse isn't able to decrease the concentration of the infecting dose and therefore provides no defense against an enteric infection with Coxsackievirus B5. In contrat, mature mice are able to reduce the amount of viral dissemination across the gut as well as inhibit replication after absorption has occurred. The results of this study indicate that there is a double barrier system developing in suckling mice that is involved with and directly related to the gastrointestinal tract The first part of this defense is the inhibition of penetration of virus across the gut when the primary site of' infection is the intestinal mucosa. This mechanism develops sometime around 20 to 22 days after birth. At about 16-18 days of age, suckling mice that were challenged intragastrically are able to stop active replication and initiate clearance of virus from the systemic circulation. There are many factors that might contribute to the marked decrease in susceptibility with age of suckling mice. Some of these or possibly a combination of these factors might explain the defense mechanisms described above, but to date, the chemistry or mechanical functioning of the gastrointestinal barrier to enteric viral infection is unknown.