884 resultados para Identification method
Resumo:
"By understanding how places have evolved, we are better able to guide development and change in the urban fabric and avoid the incongruity created by so much of the modern environment" (MacCormac, R (1996), An anatomy of London, Built Environment, Dec 1996 This paper proposes a theory on the relevance of mapping the evolutionary aspects of historical urban form in order to develop a measure of evaluating architectural elements within urban forms, through to deriving parameters for new buildings. By adopting Conzen's identification of the tripartite division of urban form; the consonance inurban form of a particular palce resides in the elements and measurable values tha makeup the fine grain aggregates of urban form. The paper will demonstrate throughthe case study of Brisbane in Australia, a method of conveying these essential components that constitute a cities continuity of form and active usage. By presenting the past as a repository of urban form characteristics, it is argued that concise architectural responses that stem from such knowledge should result in an engaged urban landscape. The essential proposition is that urban morphology is a missing constituent in the process of urban design, and that the approach of the geographical discipline to the study of urban morphology holds the key to providing the evidence of urban growth characteristics, and this methodology suggests possibilities for an architectural approach that can comprehensively determine qualitative aspects of urban buildings. The relevance of this research lies in a potential to breach the limitations of current urban analysis whilst continuing the evolving currency of urban morphology as an integral practice in the design of our cities.
Resumo:
Biotribology, the study of lubrication, wear and friction within the body, has become a topic of high importance in recent times as we continue to encounter debilitating diseases and trauma that destroy function of the joints. A highly successful surgical procedure to replace the joint with an artificial equivalent alleviates dysfunction and pain. However, the wear of the bearing surfaces in prosthetic joints is a significant clinical problem and more patients are surviving longer than the life expectancy of the joint replacement. Revision surgery is associated with increased morbidity and mortality and has a far less successful outcome than primary joint replacement. As such, it is essential to ensure that everything possible is done to limit the rate of revision surgery. Past experience indicates that the survival rate of the implant will be influenced by many parameters, of primary importance, the material properties of the implant, the composition of the synovial fluid and the method of lubrication. In prosthetic joints, effective boundary lubrication is known to take place. The interaction of the boundary lubricant and the bearing material is of utmost importance. The identity of the vital active ingredient within synovial fluid (SF) to which we owe the near frictionless performance of our articulating joints has been the quest of researchers for many years. Once identified, tribo tests can determine what materials and more importantly what surfaces this fraction of SF can function most optimally with. Surface-Active Phospholipids (SAPL) have been implicated as the body’s natural load bearing lubricant. Studies in this thesis are the first to fully characterise the adsorbed SAPL detected on the surface of retrieved prostheses and the first to verify the presence of SAPL on knee prostheses. Rinsings from the bearing surfaces of both hip and knee prostheses removed from revision operations were analysed using High Performance Liquid Chromatography (HPLC) to determine the presence and profile of SAPL. Several common prosthetic materials along with a novel biomaterial were investigated to determine their tribological interaction with various SAPLs. A pin-on-flat tribometer was used to make comparative friction measurements between the various tribo-pairs. A novel material, Pyrolytic Carbon (PyC) was screened as a potential candidate as a load bearing prosthetic material. Friction measurements were also performed on explanted prostheses. SAPL was detected on all retrieved implant bearing surfaces. As a result of the study eight different species of phosphatidylcholines were identified. The relative concentrations of each species were also determined indicating that the unsaturated species are dominant. Initial tribo tests employed a saturated phosphatidylcholine (SPC) and the subsequent tests adopted the addition of the newly identified major constituents of SAPL, unsaturated phosphatidylcholine (USPC), as the test lubricant. All tribo tests showed a dramatic reduction in friction when synthetic SAPL was used as the lubricant under boundary lubrication conditions. Some tribopairs showed more of an affinity to SAPL than others. PyC performed superior to the other prosthetic materials. Friction measurements with explanted prostheses verified the presence and performance of SAPL. SAPL, in particular phosphatidylcholine, plays an essential role in the lubrication of prosthetic joints. Of particular interest was the ability of SAPLs to reduce friction and ultimately wear of the bearing materials. The identification and knowledge of the lubricating constituents of SF is invaluable for not only the future development of artificial joints but also in developing effective cures for several disease processes where lubrication may play a role. The tribological interaction of the various tribo-pairs and SAPL is extremely favourable in the context of reducing friction at the bearing interface. PyC is highly recommended as a future candidate material for use in load bearing prosthetic joints considering its impressive tribological performance.
Resumo:
To explore potential barriers to and facilitators for implementing occupational road safety initiatives, in-depth interviews were conducted with personnel from four major Australian organizations. Twenty-four participants were involved in the interviews comprising 16 front line employees and eight managers. The interviews identified that employees perceived six organizational characteristics as potential barriers to implementing occupational road safety initiatives. These included: prioritisation of production over safety; complacency towards occupational road risks; insufficient resources; diversity; limited employee input in safety decisions; and a perception that road safety initiatives were an unnecessary burden. Of these organizational characteristics, prioritisation of production over safety and complacency were the most frequently cited barriers. In regards to facilitators, participants perceived three organizational characteristics as potential facilitators to implementing occupational road safety initiatives. These included: management commitment; the presence of existing systems that could support the implementation of initiatives; and supportive relationships. Of these organizational characteristics, management commitment was the most frequently cited facilitator.
Resumo:
This study considers the solution of a class of linear systems related with the fractional Poisson equation (FPE) (−∇2)α/2φ=g(x,y) with nonhomogeneous boundary conditions on a bounded domain. A numerical approximation to FPE is derived using a matrix representation of the Laplacian to generate a linear system of equations with its matrix A raised to the fractional power α/2. The solution of the linear system then requires the action of the matrix function f(A)=A−α/2 on a vector b. For large, sparse, and symmetric positive definite matrices, the Lanczos approximation generates f(A)b≈β0Vmf(Tm)e1. This method works well when both the analytic grade of A with respect to b and the residual for the linear system are sufficiently small. Memory constraints often require restarting the Lanczos decomposition; however this is not straightforward in the context of matrix function approximation. In this paper, we use the idea of thick-restart and adaptive preconditioning for solving linear systems to improve convergence of the Lanczos approximation. We give an error bound for the new method and illustrate its role in solving FPE. Numerical results are provided to gauge the performance of the proposed method relative to exact analytic solutions.
Resumo:
Anxiety disorders are the most common psychopathology experienced by young people, with up to 18% of adolescents developing an anxiety disorder. The consequences of these disorders, if left untreated, include impaired peer relationships, school absenteeism and self-concept problems. In addition, anxiety disorders may play a causal role in the development of depression in young people, precede eating disorders and predispose adolescents to substance abuse disorders. While the school is often chosen as a place to provide early intervention for this debilitating disorder, the fact that excessive anxiety is often not recognised in school and that young people are reluctant to seek help, makes identifying these adolescents difficult. Even when these young people are identified, there are problems in providing sensitive programs which are not stigmatising to them within a school setting. One method which may engage this adolescent population could be cross-age peer tutoring. This paper reports on a small pilot study using the “Worrybusters” program and a cross-age peer tutoring method to engage the anxious adolescents. These anxious secondary school students planned activities for teacher-referred anxious primary school students for a term in the high school setting and then delivered those activities to the younger students weekly in the next term in the primary school. Although the secondary school students decreased their scores on anxiety self-report measures there were no significant differences for primary school students’ self-reports. However, the primary school parent reports indicated a significant decrease in their child’s anxiety.
Resumo:
In the past decade, scholars have proposed a range of terms to describe the relationship between practice and research in the creative arts, including increasingly nuanced definitions of practice-based research, practice-led research and practice-as-research. In this paper, I consider the efficacy of creative practice as method. I use the example of The Ex/Centric Fixations Project – a project in which I have embedded creative practice in a research project, rather than embedding research in a creative project. The Ex/Centric Fixations project investigates the way spectators interpret human experiences – especially human experiences of difference, marginalisation or discrimination – depicted onstage. In particular, it investigates the way postmodern performance writing strategies, and the presence of performing bodied to which the experience depicted can be attached, impacts on interpretations. It is part of a broader research project which examines the performativity of spectatorship, and intervenes in emergent debates about performance, ethics and spectatorship in the context of debate about whether live performance is a privileged site for the emergence of an ethical face-to-face encounter with the Other. Using the metaphor of the Mobius strip, I examines the way practice – as a method, rather than an output – has informed, influenced and problematised the broader research project.
Resumo:
Ceramic membranes are of particular interest in many industrial processes due to their ability to function under extreme conditions while maintaining their chemical and thermal stability. Major structural deficiencies under conventional fabrication approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using larger titanate nanofibres and smaller boehmite nanofibres. This yields a radical change in membrane texture. The differences in the porous supports have no substantial influences on the texture of resulting membranes. The membranes with top layer of nanofibres coated on different porous supports by spin-coating method have similar size of the filtration pores, which is in a range of 10–100 nm. These membranes are able to effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. The retention can attain more than 95%, while maintaining a high flux rate about 900 L m-2 h. The calcination after spin-coating creates solid linkages between the fibres and between fibres and substrate, in addition to convert boehmite into -alumina nanofibres. This reveals a new direction in membrane fabrication.
Resumo:
In this paper, we consider a modified anomalous subdiffusion equation with a nonlinear source term for describing processes that become less anomalous as time progresses by the inclusion of a second fractional time derivative acting on the diffusion term. A new implicit difference method is constructed. The stability and convergence are discussed using a new energy method. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of theoretical analysis
Resumo:
In this paper, we consider the following non-linear fractional reaction–subdiffusion process (NFR-SubDP): Formula where f(u, x, t) is a linear function of u, the function g(u, x, t) satisfies the Lipschitz condition and 0Dt1–{gamma} is the Riemann–Liouville time fractional partial derivative of order 1 – {gamma}. We propose a new computationally efficient numerical technique to simulate the process. Firstly, the NFR-SubDP is decoupled, which is equivalent to solving a non-linear fractional reaction–subdiffusion equation (NFR-SubDE). Secondly, we propose an implicit numerical method to approximate the NFR-SubDE. Thirdly, the stability and convergence of the method are discussed using a new energy method. Finally, some numerical examples are presented to show the application of the present technique. This method and supporting theoretical results can also be applied to fractional integrodifferential equations.
Resumo:
In this paper we identify elements in Marx´s economic and political writings that are relevant to contemporary critical discourse analysis (CDA). We argue that Marx can be seen to be engaging in a form of discourse analysis. We identify the elements in Marx´s historical materialist method that support such a perspective, and exemplify these in a longitudinal comparison of Marx´s texts.
Resumo:
This paper discusses a method, Generation in Context, for interrogating theories of music analysis and music perception. Given an analytic theory, the method consists of creating a generative process that implements the theory in reverse. Instead of using the theory to create analyses from scores, the theory is used to generate scores from analyses. Subjective evaluation of the quality of the musical output provides a mechanism for testing the theory in a contextually robust fashion. The method is exploratory, meaning that in addition to testing extant theories it provides a general mechanism for generating new theoretical insights. We outline our initial explorations in the use of generative processes for music research, and we discuss how generative processes provide evidence as to the veracity of theories about how music is experienced, with insights into how these theories may be improved and, concurrently, provide new techniques for music creation. We conclude that Generation in Context will help reveal new perspectives on our understanding of music.
Resumo:
Dehydration has been associated with increased morbidity and mortality. Dehydration risk increases with advancing age, and will progressively become an issue as the aging population increases. Worldwide, those aged 60 years and over are the fastest growing segment of the population. The study aimed to develop a clinically practical means to identify dehydration amongst older people in the clinical care setting. Older people aged 60 years or over admitted to the Geriatric and Rehabilitation Unit (GARU) of two tertiary teaching hospitals were eligible for participation in the study. Ninety potential screening questions and 38 clinical parameters were initially tested on a single sample (n=33) with the most promising 11 parameters selected to undergo further testing in an independent group (n=86). Of the almost 130 variables explored, tongue dryness was most strongly associated with poor hydration status, demonstrating 64% sensitivity and 62% specificity within the study participants. The result was not confounded by age, gender or body mass index. With minimal training, inter-rater repeatability was over 90%. This study identified tongue dryness as a potentially practical tool to identify dehydration risk amongst older people in the clinical care setting. Further studies to validate the potential screen in larger and varied populations of older people are required
Resumo:
The central aim for the research undertaken in this PhD thesis is the development of a model for simulating water droplet movement on a leaf surface and to compare the model behavior with experimental observations. A series of five papers has been presented to explain systematically the way in which this droplet modelling work has been realised. Knowing the path of the droplet on the leaf surface is important for understanding how a droplet of water, pesticide, or nutrient will be absorbed through the leaf surface. An important aspect of the research is the generation of a leaf surface representation that acts as the foundation of the droplet model. Initially a laser scanner is used to capture the surface characteristics for two types of leaves in the form of a large scattered data set. After the identification of the leaf surface boundary, a set of internal points is chosen over which a triangulation of the surface is constructed. We present a novel hybrid approach for leaf surface fitting on this triangulation that combines Clough-Tocher (CT) and radial basis function (RBF) methods to achieve a surface with a continuously turning normal. The accuracy of the hybrid technique is assessed using numerical experimentation. The hybrid CT-RBF method is shown to give good representations of Frangipani and Anthurium leaves. Such leaf models facilitate an understanding of plant development and permit the modelling of the interaction of plants with their environment. The motion of a droplet traversing this virtual leaf surface is affected by various forces including gravity, friction and resistance between the surface and the droplet. The innovation of our model is the use of thin-film theory in the context of droplet movement to determine the thickness of the droplet as it moves on the surface. Experimental verification shows that the droplet model captures reality quite well and produces realistic droplet motion on the leaf surface. Most importantly, we observed that the simulated droplet motion follows the contours of the surface and spreads as a thin film. In the future, the model may be applied to determine the path of a droplet of pesticide along a leaf surface before it falls from or comes to a standstill on the surface. It will also be used to study the paths of many droplets of water or pesticide moving and colliding on the surface.