970 resultados para Ground control point
Resumo:
The main focus of this thesis is to address the relative localization problem of a heterogenous team which comprises of both ground and micro aerial vehicle robots. This team configuration allows to combine the advantages of increased accessibility and better perspective provided by aerial robots with the higher computational and sensory resources provided by the ground agents, to realize a cooperative multi robotic system suitable for hostile autonomous missions. However, in such a scenario, the strict constraints in flight time, sensor pay load, and computational capability of micro aerial vehicles limits the practical applicability of popular map-based localization schemes for GPS denied navigation. Therefore, the resource limited aerial platforms of this team demand simpler localization means for autonomous navigation. Relative localization is the process of estimating the formation of a robot team using the acquired inter-robot relative measurements. This allows the team members to know their relative formation even without a global localization reference, such as GPS or a map. Thus a typical robot team would benefit from a relative localization service since it would allow the team to implement formation control, collision avoidance, and supervisory control tasks, independent of a global localization service. More importantly, a heterogenous team such as ground robots and computationally constrained aerial vehicles would benefit from a relative localization service since it provides the crucial localization information required for autonomous operation of the weaker agents. This enables less capable robots to assume supportive roles and contribute to the more powerful robots executing the mission. Hence this study proposes a relative localization-based approach for ground and micro aerial vehicle cooperation, and develops inter-robot measurement, filtering, and distributed computing modules, necessary to realize the system. The research study results in three significant contributions. First, the work designs and validates a novel inter-robot relative measurement hardware solution which has accuracy, range, and scalability characteristics, necessary for relative localization. Second, the research work performs an analysis and design of a novel nonlinear filtering method, which allows the implementation of relative localization modules and attitude reference filters on low cost devices with optimal tuning parameters. Third, this work designs and validates a novel distributed relative localization approach, which harnesses the distributed computing capability of the team to minimize communication requirements, achieve consistent estimation, and enable efficient data correspondence within the network. The work validates the complete relative localization-based system through multiple indoor experiments and numerical simulations. The relative localization based navigation concept with its sensing, filtering, and distributed computing methods introduced in this thesis complements system limitations of a ground and micro aerial vehicle team, and also targets hostile environmental conditions. Thus the work constitutes an essential step towards realizing autonomous navigation of heterogenous teams in real world applications.
Resumo:
The main focus of this research is to design and develop a high performance linear actuator based on a four bar mechanism. The present work includes the detailed analysis (kinematics and dynamics), design, implementation and experimental validation of the newly designed actuator. High performance is characterized by the acceleration of the actuator end effector. The principle of the newly designed actuator is to network the four bar rhombus configuration (where some bars are extended to form an X shape) to attain high acceleration. Firstly, a detailed kinematic analysis of the actuator is presented and kinematic performance is evaluated through MATLAB simulations. A dynamic equation of the actuator is achieved by using the Lagrangian dynamic formulation. A SIMULINK control model of the actuator is developed using the dynamic equation. In addition, Bond Graph methodology is presented for the dynamic simulation. The Bond Graph model comprises individual component modeling of the actuator along with control. Required torque was simulated using the Bond Graph model. Results indicate that, high acceleration (around 20g) can be achieved with modest (3 N-m or less) torque input. A practical prototype of the actuator is designed using SOLIDWORKS and then produced to verify the proof of concept. The design goal was to achieve the peak acceleration of more than 10g at the middle point of the travel length, when the end effector travels the stroke length (around 1 m). The actuator is primarily designed to operate in standalone condition and later to use it in the 3RPR parallel robot. A DC motor is used to operate the actuator. A quadrature encoder is attached with the DC motor to control the end effector. The associated control scheme of the actuator is analyzed and integrated with the physical prototype. From standalone experimentation of the actuator, around 17g acceleration was achieved by the end effector (stroke length was 0.2m to 0.78m). Results indicate that the developed dynamic model results are in good agreement. Finally, a Design of Experiment (DOE) based statistical approach is also introduced to identify the parametric combination that yields the greatest performance. Data are collected by using the Bond Graph model. This approach is helpful in designing the actuator without much complexity.
Resumo:
In this paper, a new open-winding control strategy is proposed for a brushless doubly-fed reluctance generator (BDFRG) applicable for wind turbines. The BDFRG control winding is fed via a dual two-level three-phase converter using a single dc bus. Direct power control based on maximum power point tracking with common mode voltage elimination is designed, which not only the active and reactive power is decoupled, but the reliability and redundancy are all improved greatly by increasing the switching modes of operation, while DC-link voltage and rating of power devices decreased by 50% comparing to the traditional three-level converter systems. Consequently its effectiveness is evaluated by simulation tests based on a 42-kW prototype generator.
Resumo:
We consider the suppression of spatiotemporal chaos in the complex GinzburgLandau equation by a combined global and local time-delay feedback. Feedback terms are implemented as a control scheme, i.e., they are proportional to the difference between the time-delayed state of the system and its current state. We perform a linear stability analysis of uniform oscillations with respect to space-dependent perturbations and compare with numerical simulations. Similarly, for the fixed-point solution that corresponds to amplitude death in the spatially extended system, a linear stability analysis with respect to space-dependent perturbations is performed and complemented by numerical simulations. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Aims: Measurement of glycated hemoglobin (HbA1c) is an important indicator of glucose control over time. Point-of-care (POC) devices allow for rapid and convenient measurement of HbA1c, greatly facilitating diabetes care. We assessed two POC analyzers in the Peruvian Amazon where laboratory-based HbA1c testing is not available.
Methods: Venous blood samples were collected from 203 individuals from six different Amazonian communities with a wide range of HbA1c, 4.4-9.0% (25-75 mmol/mol). The results of the Afinion AS100 and the DCA Vantage POC analyzers were compared to a central laboratory using the Premier Hb9210 high-performance liquid chromatography (HPLC) method. Imprecision was assessed by performing 14 successive tests of a single blood sample.
Results: The correlation coefficient r for POC and HPLC results was 0.92 for the Afinion and 0.93 for the DCA Vantage. The Afinion generated higher HbA1c results than the HPLC (mean difference = +0.56% [+6 mmol/mol]; p < 0.001), as did the DCA Vantage (mean difference = +0.32% [4 mmol/mol]). The bias observed between POC and HPLC did not vary by HbA1c level for the DCA Vantage (p = 0.190), but it did for the Afinion (p < 0.001). Imprecision results were: CV = 1.75% for the Afinion, CV = 4.01% for the DCA Vantage. Sensitivity was 100% for both devices, specificity was 48.3% for the Afinion and 85.1% for the DCA Vantage, positive predictive value (PPV) was 14.4% for the Afinion and 34.9% for the DCA Vantage, and negative predictive value (NPV) for both devices was 100%. The area under the receiver operating characteristic (ROC) curve was 0.966 for the Afinion and 0.982 for the DCA Vantage. Agreement between HPLC and POC in classifying diabetes and prediabetes status was slight for the Afinion (Kappa = 0.12) and significantly different (McNemar’s statistic = 89; p < 0.001), and moderate for the DCA Vantage (Kappa = 0.45) and significantly different (McNemar’s statistic = 28; p < 0.001).
Conclusions: Despite significant variation of HbA1c results between the Afinion and DCA Vantage analyzers compared to HPLC, we conclude that both analyzers should be considered in health clinics in the Peruvian Amazon for therapeutic adjustments if healthcare workers are aware of the differences relative to testing in a clinical laboratory. However, imprecision and bias were not low enough to recommend either device for screening purposes, and the local prevalence of anemia and malaria may interfere with diagnostic determinations for a substantial portion of the population.
Resumo:
While a great amount of attention is being given to the development of nanodevices, both through academic research and private industry, the field is still on the verge. Progress hinges upon the development of tools and components that can precisely control the interaction between light and matter, and that can be efficiently integrated into nano-devices. Nanofibers are one of the most promising candidates for such purposes. However, in order to fully exploit their potential, a more intimate knowledge of how nanofibers interact with single neutral atoms must be gained. As we learn more about the properties of nanofiber modes, and the way they interface with atoms, and as the technology develops that allows them to be prepared with more precisely known properties, they become more and more adaptable and effective. The work presented in this thesis touches on many topics, which is testament to the broad range of applications and high degree of promise that nanofibers hold. For immediate use, we need to fully grasp how they can be best implemented as sensors, filters, detectors, and switches in existing nano-technologies. Areas of interest also include how they might be best exploited for probing atom-surface interactions, single-atom detection and single photon generation. Nanofiber research is also motivated by their potential integration into fundamental cold atom quantum experiments, and the role they can play there. Combining nanofibers with existing optical and quantum technologies is a powerful strategy for advancing areas like quantum computation, quantum information processing, and quantum communication. In this thesis I present a variety of theoretical work, which explores a range of the applications listed above. The first work presented concerns the use of the evanescent fields around a nanofiber to manipulate an existing trapping geometry and therefore influence the centre-of-mass dynamics of the atom. The second work presented explores interesting trapping geometries that can be achieved in the vicinity of a fiber in which just four modes are allowed to propagate. In a third study I explore the use of a nanofiber as a detector of small numbers of photons by calculating the rate of emission into the fiber modes when the fiber is moved along next to a regularly separated array of atoms. Also included are some results from a work in progress, where I consider the scattered field that appears along the nanofiber axis when a small number of atoms trapped along that axis are illuminated orthogonally; some interesting preliminary results are outlined. Finally, in contrast with the rest of the thesis, I consider some interesting physics that can be done in one of the trapping geometries that can be created around the fiber, here I explore the ground states of a phase separated two-component superfluid Bose-Einstein condensate trapped in a toroidal potential.
Resumo:
As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.
Resumo:
The continuous sediment record from Lake El'gygytgyn in the northeastern Eurasian Arctic spans the last 3.6 Ma and for much of this time permafrost dynamics and lake level changes have likely played a crucial role for sediment delivery to the lake. Changes in the ground-ice hydrochemical composition (d18O, dD, pH, electrical conductivity, Na+, Mg2+, Ca2+, K+, HCO3-, Cl-, SO4-) of a 141 m long permafrost record from the western crater plain are examined to reconstruct repeated periods of freeze and thaw at the lake edge. Stable water isotope and major ion records of ground ice in the permafrost reflect both a synsedimentary palaeo-precipitation signal preserved in the near-surface permafrost (0.0-9.1 m core depth) and a post-depositional record of thawing and refreezing in deeper layers of the core (9.1-141.0 m core depth). These lake marginal permafrost dynamics were controlled by lake level changes that episodically flooded the surfaces and induced thaw in the underlying frozen ground. During times of lake level fall these layers froze over again. At least three cycles of freeze and thaw are identified and the hydrochemical data point to a vertical and horizontal talik refreezing through time. Past permafrost thaw and freeze may have destabilised the basin slopes of Lake El'gygytgyn and this has probably promoted the release of mass movements from the lake edge to the deeper basin as known from frequently occurring turbidite layers in the lake sediment column.
Resumo:
Pipelines extend thousands of kilometers across wide geographic areas as a network to provide essential services for modern life. It is inevitable that pipelines must pass through unfavorable ground conditions, which are susceptible to natural disasters. This thesis investigates the behaviour of buried pressure pipelines experiencing ground distortions induced by normal faulting. A recent large database of physical modelling observations on buried pipes of different stiffness relative to the surrounding soil subjected to normal faults provided a unique opportunity to calibrate numerical tools. Three-dimensional finite element models were developed to enable the complex soil-structure interaction phenomena to be further understood, especially on the subjects of gap formation beneath the pipe and the trench effect associated with the interaction between backfill and native soils. Benchmarked numerical tools were then used to perform parametric analysis regarding project geometry, backfill material, relative pipe-soil stiffness and pipe diameter. Seismic loading produces a soil displacement profile that can be expressed by isoil, the distance between the peak curvature and the point of contraflexure. A simplified design framework based on this length scale (i.e., the Kappa method) was developed, which features estimates of longitudinal bending moments of buried pipes using a characteristic length, ipipe, the distance from peak to zero curvature. Recent studies indicated that empirical soil springs that were calibrated against rigid pipes are not suitable for analyzing flexible pipes, since they lead to excessive conservatism (for design). A large-scale split-box normal fault simulator was therefore assembled to produce experimental data for flexible PVC pipe responses to a normal fault. Digital image correlation (DIC) was employed to analyze the soil displacement field, and both optical fibres and conventional strain gauges were used to measure pipe strains. A refinement to the Kappa method was introduced to enable the calculation of axial strains as a function of pipe elongation induced by flexure and an approximation of the longitudinal ground deformations. A closed-form Winkler solution of flexural response was also derived to account for the distributed normal fault pattern. Finally, these two analytical solutions were evaluated against the pipe responses observed in the large-scale laboratory tests.
Resumo:
Desde la llegada de la revolución bioteconológica en la agricultura mundial, las corporaciones semilleras-agroquímicas han avanzado en el control del mercado internacional de alimentos, a partir de diversos mecanismos, entre ellos el de la legislación de derechos de propiedad intelectual. En América Latina, distintos gobiernos han procurado adecuar la legislación nacional a estas tendencias internacionales, con resultado dispar, ya que se ha generado una fuerte resistencia desde organizaciones populares. Argentina, un país de temprana inserción en el mercado internacional de alimentos y de rápida adopción de los derechos de obtentor, está atravesado hoy por una nueva fase de esta disputa, ante la posible sanción de una nueva Ley de Semillas, en la que empresa estadounidense Monsanto está involucrada. Este trabajo hace un repaso del panorama actual desde un punto de vista geográfico, prestando especial atención a las estrategias de las organizaciones que se oponen a la nueva legislación.
Resumo:
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets,high amplitude EM pulses propagate away from the interaction point and are transported along anystalks and wires attached to the target. The propagation of these high amplitude pulses along a thinwire connected to a laser irradiated target was diagnosed via the proton radiography technique,measuring a pulse duration of 20 ps and a pulse velocity close to the speed of light. The strongelectric field associated with the EM pulse can be exploited for controlling dynamically the protonbeams produced from a laser-driven source. Chromatic divergence control of broadband laser drivenprotons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supportingwire around the proton beam axis to create a helical coil structure. In addition to providingfocussing and energy selection, the technique has the potential to post-accelerate the transiting protonsby the longitudinal component of the curved electric field lines produced by the helical coil lens.
Resumo:
MEDEIROS, Adelardo A. D.A survey of control architectures for autonomous mobile robots. J. Braz. Comp. Soc., Campinas, v. 4, n. 3, abr. 1998 .Disponível em:
Resumo:
Les manifestations de crise, en Côte d'Ivoire, ont été extrêmement violentes. Au cours des quinze dernières années, plus de 400 personnes sont mortes, tuées dans des affrontements avec les forces de sécurités ou des contre-manifestants. Malgré la gravité du problème, peu d’études scientifiques y sont consacrées et les rares analyses et enquêtes existantes portent, de façon unilatérale, sur l’identité et la responsabilité pénale des auteurs et commanditaires putatifs de cette violence. La présente étude s’élève contre le moralisme inhérent à ces approches pour aborder la question sous l’angle de l’interaction : cette thèse a pour objectif de comprendre les processus et logiques qui sous-tendent l’usage de la violence au cours des manifestations. Le cadre théorique utilisé dans cette étude qualitative est l’interactionnisme symbolique. Le matériel d’analyse est composé d’entrevues et de divers documents. Trente-trois (33) entrevues semi-dirigées ont été réalisées avec des policiers et des manifestants, cooptés selon la technique de la boule de neige, entre le 3 janvier et le 15 mai 2013, à Abidjan. Les rapports d’enquête, de l’ONG Human Rights Watch, sur les manifestations de crise, les manuels de formation de la police et divers autres matériaux périphériques ont également été consultés. Les données ont été analysées suivant les principes et techniques de la théorisation ancrée (Paillée, 1994). Trois principaux résultats ont été obtenus. Premièrement, le système ivoirien de maintien de l'ordre est conçu selon le modèle d’une « police du prince ». Les forces de sécurité dans leur ensemble y occupent une fonction subalterne d’exécutant. Elles sont placées sous autorité politique avec pour mandat la défense inconditionnelle des institutions. Le style standard de gestion des foules, qui en découle, est légaliste et répressif, correspondant au style d’escalade de la force (McPhail, Schweingruber, & Carthy, 1998). Cette « police du prince » dispose toutefois de marges de manœuvre sur le terrain, qui lui permettent de moduler son style en fonction de la conception qu’elle se fait de l’attitude des manifestants : paternaliste avec les foules dites calmes, elle devient répressive ou déviante avec les foules qu’elle définit comme étant hostiles. Deuxièmement, à rebours d’une conception victimaire de la foule, la violence est une transaction situationnelle dynamique entre forces de sécurité et manifestants. La violence suit un processus ascendant dont les séquences et les règles d’enchainement sont décrites. Ainsi, le premier niveau auquel s’arrête la majorité des manifestations est celui d’une force non létale bilatérale dans lequel les deux acteurs, protestataires et policiers, ont recours à des armes non incapacitantes, où les cailloux des premiers répondent au gaz lacrymogène des seconds. Le deuxième niveau correspond à la létalité unilatérale : la police ouvre le feu lorsque les manifestants se rapprochent de trop près. Le troisième et dernier niveau est atteint lorsque les manifestants utilisent à leur tour des armes à feu, la létalité est alors bilatérale. Troisièmement, enfin, le concept de « l’indignité républicaine » rend compte de la logique de la violence dans les manifestations. La violence se déclenche et s’intensifie lorsqu’une des parties, manifestants ou policiers, interprète l’acte posé par l’adversaire comme étant en rupture avec le rôle attendu du statut qu’il revendique dans la manifestation. Cet acte jugé indigne a pour conséquence de le priver de la déférence rattachée à son statut et de justifier à son encontre l’usage de la force. Ces actes d’indignités, du point de vue des policiers, sont symbolisés par la figure du manifestant hostile. Pour les manifestants, l’indignité des forces de sécurité se reconnait par des actes qui les assimilent à une milice privée. Le degré d’indignité perçu de l’acte explique le niveau d’allocation de la violence.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08