920 resultados para Graphene, Organic Electronics, Transparent Electrode


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic routes leading to 12 L-phenylalanine based mono- and bipolar derivatives (1-12) and an in-depth study of their structure-property relationship with respect to gelation have been presented. These include monopolar systems such as N-[(benzyloxy)carbonyl]-L-phenylalanine-N-alkylamides and the corresponding bipolar derivatives with flexible and rigid spacers such as with 1,12-diaminododecane and 4,4'-diaminodiphenylmethane, respectively. The two ends of the latter have been functionalized with N-[(benzyloxy)carbonyl]-L-phenylalanine units via amide connection. Another bipolar molecule was synthesized in which the middle portion of the hydrocarbon segment contained polymerizable diacetylene unit. To ascertain the role of the presence of urethane linkages in the gelator molecule protected L-phenylalanine derivatives were also synthesized in which the (benzyloxy)carbonyl group has been replaced with (tert-butyloxy)carbonyl, acetyl, and benzoyl groups, respectively. Upon completion of the synthesis and adequate characterization of the newly described molecules, we examined the aggregation and gelation properties of each of them in a number of solvents and their mixtures. Optical microscopy and electron microscopy further characterized the systems that formed gels. Few representative systems, which showed excellent gelation behavior was, further examined by FT-IR, calorimetric, and powder X-ray diffraction studies. To explain the possible reasons for gelation, the results of molecular modeling and energy-minimization studies were also included. Taken together these results demonstrate the importance of the presence of (benzyloxy)carbonyl unit, urethane and secondary amide linkages, chiral purities of the headgroup and the length of the alkyl chain of the hydrophobic segment as critical determinants toward effective gelation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the low-frequency resistance uctuations, or noise, in bilayer graphene is strongly connected to its band structure, and displays a minimum when the gap between the conduction and valence band is zero. Using double-gated bilayer graphene devices we have tuned the zero gap and charge neutrality points independently, which oers a versatile mechanism to investigate the low-energy band structure, charge localization and screening properties of bilayer graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical capacity retention of nearly X-ray amorphous nanostructured manganese oxide (nanoMnO2) synthesized by mixing directly KMnO4 with ethylene glycol under ambient conditions for supercapacitor studies is enhanced significantly. Although X-ray diffraction (XRD) pattern of nanoMnO2 shows poor crystallinity, it is found that by Mn K-edge X-ray absorption near edge structure (XANES) measurement that the nanoMnO2 obtained is locally arranged in a δ-MnO2-type layered structure composed of edge-shared network of MnO6 octahedra. Field emission scanning electron microscopy and XANES measurements show that nanoMnO2 contains nearly spherical shaped morphology with δ-MnO2 structure, and 1D nanorods of α-MnO2 type structure (powder XRD) in the annealed (600 °C) sample. Volumetric nitrogen adsorption−desorption isotherms, inductively coupled plasma analysis, and thermal analysis are carried out to obtain physicochemical properties such as surface area (230 m2 g−1), porosity of nanoMnO2 (secondary mesopores of diameter 14.5 nm), water content, composition, etc., which lead to the promising electrochemical properties as an electrode for supercapacitor. The nanoMnO2 shows a very high stability even after 1200 cycles with capacity retention of about 250 F g−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the low-frequency resistance fluctuations, or noise, in bilayer graphene are strongly connected to its band structure and display a minimum when the gap between the conduction and valence band is zero. Using double-gated bilayer graphene devices we have tuned the zero gap and charge neutrality points independently, which offers a versatile mechanism to investigate the low-energy band structure, charge localization, and screening properties of bilayer graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative investigation of charge transport properties is presented, for polymeric [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)], single-wall carbon nanotube (SWNT) and inorganic (indium tin oxide, ITO), transparent conducting electrodes. The polymeric and nanotube systems show hopping transport at low temperatures, in contrast with the disordered-metal transport in ITO. The low temperature magnetotransport (up to 11 T) and high electric-field transport (up to 500 V/cm) indicate the significant role of nanoscopic scale disorder for charge transport in polymer and nanotube based systems. The results show that characteristic length scales like localization length correlates with the nanomorphology in these systems. Further, the high frequency conductivity measurements (up to 30 MHz) in PEDOT:PSS and SWNT follow the extended pair approximation model [σ(ω)=σ(0)[1+(ω/ω0)s].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene is a fascinating new nanocarbon possessing, single-, bi- or few- (<= ten) layers of carbon atoms forming six-membered rings. Different types of graphene have been investigated by X-ray diffraction, atomic force microscopy, transmission electron microscopy, scanning tunneling microscopy and Raman spectroscopy. The extraordinary electronic properties of single-and bi-layer graphenes are indeed most unique and unexpected. Other properties of graphene such as gas adsorption characteristics, magnetic and electrochemical properties and the effects of doping by electrons and holes are equally noteworthy. Interestingly, molecular charge-transfer also markedly affects the electronic structure and properties of graphene. Many aspects of graphene are yet to be explored, including synthetic strategies which can yield sufficient quantities of graphene with the desired number of layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of tetrathiafulvalene (TTF) and tetracyanoethylene (TCNE) with few-layer graphene samples prepared by the exfoliation of graphite oxide (EG), conversion of nanodiamond (DG) and arc-evaporation of graphite in hydrogen (HG) has been investigated by Raman spectroscopy to understand the role of the graphene surface. The position and full-width at half maximum of the Raman G-band are affected on interaction with TTF and TCNE and the effect is highest with EG and least with HG. The effect of TTF and TCNE on the 2D-band is also maximum with EG. The magnitude of interaction between the donor/acceptor molecules varies in the same order as the surface areas of the graphenes. (C) 2009 Published by Elsevier B. V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified method has been developed for the deposition of transparent semiconducting thin films of tin oxide, involving the chemical vapour phase oxidation of tin iodide. These films show sheet resistances greater than 100 Ω/□ and an average optical transmission in the visible range exceeding 80%. The method avoids uncontrolled contamination, resulting in better reproducibility of the films. The films showed direct and indirect transitions and the possibility of an indirect forbidden transition. X-ray diffraction studies reveal that the films are polycrystalline. The low mobility values of the films have been attributed to the grain boundary scattering effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple three-state model permitting two different configurational states for the solvent, together with one for the organic adsorbate, is analysed to derive the adsorption isotherm. The implications of this model regarding pseudo-two-state and pseudo-Frumkin adsorption isotherms are indicated. A critique of the earlier theory of Bockris, Devanathan and Müller is presented in brief.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge at which adsorption of orgamc compounds attains a maximum ( \sigma MAX M) at an electrochenucal interface is analysed using several multi-state models in a hierarchical manner The analysis is based on statistical mechamcal results for the following models (A) two-state site parity, (B) two-state muhl-slte, and (C) three-state site parity The coulombic interactions due to permanent and reduced dipole effects (using mean field approximation), electrostatic field effects and specific substrate interactions have been taken into account. The simplest model in the hierarchy (two-state site parity) yields the exphcit dependence of ( \sigma MAX M) on the permanent dipole moment, polarizability of the solvent and the adsorbate, lattice spacing, effective coordination number, etc Other models in the baerarchy bring to hght the influence of the solvent structure and the role of substrate interactions, etc As a result of this approach, the "composition" of oM.x m terms of the fundamental molecular constants becomes clear. With a view to use these molecular results to maxamum advantage, the derived results for ( \sigma MAX M) have been converted into those involving experimentally observable parameters lake Co, C 1, E N, etc Wherever possible, some of the earlier phenomenologlcal relations reported for ( \sigma MAX M), notably by Parsons, Damaskm and Frumkln, and Trasattl, are shown to have a certain molecular basis, vlz a simple two-state sate panty model.As a corollary to the hxerarcbacal modelling, \sigma MAX M and the potential corresponding to at (Emax) are shown to be constants independent of 0max or Corg for all models The lmphcatlon of our analysis f o r OmMa x with respect to that predicted by the generalized surface layer equation (which postulates Om~ and Ema x varlaUon with 0) is discussed in detail Finally we discuss an passing o M. and the electrosorptlon valency an this context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relations for the inner layer potential &fference (E) in the presence of adsorbed orgamc molecules are derived for three hterarchlcal models, m terms of molecular constants like permanent &pole moments, polarlzablhtles, etc It is shown how the experimentally observed patterns of the E vs 0 plots (hnear m all ranges of $\sigma^M$, non-linear in one or both regions of o M, etc ) can be understood in a serm-quantltatlve manner from the simplest model in our hierarchy, viz the two-state site panty version Two-state multi-site and three-state (sxte panty) models are also analysed and the slope (3E/80),,M tabulated for these also The results for the Esm-Markov effect are denved for all the models and compared with the earlier result of Parsons. A comparison with the GSL phenomenologlcal equation is presented and its molecular basis, as well as the hmltatlons, is analysed. In partxcular, two-state multa-slte and three-state (site panty) models yield E-o M relations that are more general than the "umfied" GSL equation The posslblhty of vaewlng the compact layer as a "composite medium" with an "effective dlelectnc constant" and obtaimng novel phenomenological descnptions IS also indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report phonon renormalization in bilayer graphene as a function of doping. The Raman G peak stiffens and sharpens for both electron and hole doping as a result of the nonadiabatic Kohn anomaly at the Gamma point. The bilayer has two conduction and valence subbands, with splitting dependent on the interlayer coupling. This gives a change of slope in the variation of G peak position with doping which allows a direct measurement of the interlayer coupling strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent SrLiB9O15 (SLBO) glasses were fabricated via the conventional melt-quenching technique. X-ray powder diffraction and differential thermal analysis carried out on the as-quenched samples confirmed their amorphous and glassy nature, respectively. The dielectric constants in the 100 Hz to 10 MHz frequency range for SLBO glasses were measured as a function of temperature (300–1023 K). The dielectric relaxation characteristics were rationalized using the electric modulus formalism. The electrode polarization effect was subtracted from the low-frequency dielectric constant to have an insight into the intrinsic dielectric behavior of SLBO glasses. The imaginary part of electric modulus spectra was modeled using an approximate solution of Kohlrausch–Williams–Watts relation. The dielectric constant for the as-quenched glass increased with increasing temperature and exhibited anomalies in the vicinity of the glass transition and crystallization temperatures.