887 resultados para Ganglia, Autonomic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Fisioterapia - FCT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress hormones in Rocky Mountain bighorn sheep (Ovis canadensis canadensis), produced in response to environmental changes, road development, or high population density, may impact their immune systems to a threshold level that predisposes them to periodic, large-scale mortality. We compared the stress response to a novel environmental situation and repeated handling between bighorn sheep born and raised in captivity (CR) and bighorn sheep born in the wild (WC) and brought into captivity. We measured plasma epinephrine, norepinephrine, cortisol, and fecal glucocorticoid metabolites (FGM). Three weeks after each group’s arrival we used a one-time drop-net event to elicit an acute stress response, and we collected blood samples from each sheep over 35 minutes, as well as one fecal sample. We collected blood and fecal samples from both groups on 7 other occasions over the subsequent 6 months. We also collected fecal samples from the pen at approximately 24-hour intervals for 3 days following every handling event to monitor the stress response to handling. We found that CR sheep had a stronger autonomic nervous system response than WC sheep, as measured by epinephrine and norepinephrine levels, but we found a very similar hypothalamic–pituitary–adrenal axis (HPA) response, measured by cortisol levels, to the acute stress event of a drop-net restraint. We also found that once the WC sheep had acclimated, as indicated by the return to the initial baseline FGM levels within 12 weeks, the CR and WC groups’ HPA responses to sampling events were not significantly different from one another. Fecal samples can provide a noninvasive mechanism for managers to monitor baseline FGM for a given herd. Using long-term monitoring of FGM rather than values from a single point in time may allow managers to correlate these levels to outside influences on the herd and better understand the impacts of management changes, population density, or increased human developments on the health of the sheep population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neural control of the cardiovascular system is a complex process that involves many structures at different levels of nervous system. Several cortical areas are involved in the control of systemic blood pressure, such as the sensorimotor cortex, the medial prefrontal cortex and the insular cortex. Non-invasive brain stimulation techniques - repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) - induce sustained and prolonged functional changes of the human cerebral cortex. rTMS and tDCS has led to positive results in the treatment of some neurological and psychiatric disorders. Because experiments in animals show that cortical modulation can be an effective method to regulate the cardiovascular system, non-invasive brain stimulation might be a novel tool in the therapeutics of human arterial hypertension. We here review the experimental evidence that non-invasive brain stimulation can influence the autonomic nervous system and discuss the hypothesis that focal modulation of cortical excitability by rTMS or tDCS can influence sympathetic outflow and, eventually, blood pressure, thus providing a novel therapeutic tool for human arterial hypertension. (C) 2009 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A revision of the deep-water verticordiid genus Spinosipella is provided, based on conchological and anatomical characters. The genus is considered distinct from Verticordia (of which it was considered a subgenus) based on the strong ribs, prickly surface, reduction of lunula, relative large size, weakly spiral valve shape, and other characters. The following species are considered in the genus: (1) Spinosipella agnes new species, ranging from Florida, USA, to Rio de Janeiro, Brazil, and also including the Porcupine Abyssal Plain in the North Atlantic; (2) S. tinga new species, occurring from Rio de Janeiro to Rio Grande do Sul, Brazil; (3) S. acuticostata (Philippi, 1844), a Pliocene fossil from southern Italy; (4) S. deshayesiana (Fischer, 1862), from south and central Indo-Pacific (S. ericia Hedley, 1911, the type species of the genus, was revealed to be a new synonym of S. deshayesiana); and (5) S. costeminens (Poutiers, 1981), from the tropical west Pacific. The five species differ mainly in conchological details of the number and size of ribs, of the prickly sculpture, shape of the shell, of the hinge and the degree of convexity. Anatomical description is also provided for the two Pacific species, which differ among themselves mainly by the size of the pair of renal folds. From the standpoint of anatomical characters, the more significant are: the wide lithodesma; the elongation of the auricles, crossing the roof of pallial cavity; a tall digital fold in posterior region of supraseptal chamber; the low but wide palps; the muscular, gizzard-like stomach; the complete separation of both constituents of the hermaphroditic gonad (a ventro-posterior testicle and a centro-dorsal ovary), and a complete fusion of the visceral ganglia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term synaptic plasticity has been recently described in brainstem areas associated to visceral afferent sensory integration. Chronic intermittent hypoxia (CIH), an animal model for studying obstructive sleep apnea in humans, depresses the afferent neurotransmission in nucleus tractus solitarii (NTS) neurons, which affect respiratory and autonomic regulation. Here we identified the synaptic mechanisms of CIH-induced depression of the afferent neurotransmission in NTS neurons in juvenile rats. We verified that CIH reduced the amplitude of both NMDA and non-NMDA glutamatergic excitatory currents (eEPSCs) evoked by tractus solitarii stimulation (TS-eEPSC) of second-order neurons in the NTS. No changes were observed in release probability, evidenced by absence of any CIH-elicited effects on short-term depression and failures in EPSCs evoked in low calcium. CIH also produced no changes in TS-eEPSC quantal size, since the amplitudes of both low calcium-evoked EPSCs and asynchronous TS-eEPSCs (evoked in the presence of Sr2+) were unchanged. Using single TS afferent fiber stimulation in slices from control and CIH rats we clearly show that CIH reduced the quantal content of the TS-eEPSCs without affecting the quantal size or release probability, suggesting a reduction in the number of active synapses as the mechanism of CIH induced TS-eEPSC depression. In accordance with this concept, the input-output relationship of stimulus intensity and TS-eEPSC amplitude shows an early saturation in CIH animals. These findings open new perspectives for a better understanding of the mechanisms underlying the synaptic plasticity in the brainstem sensory neurons under challenges such as those produced by CIH in experimental and pathological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: To examine whether the ob/ob mouse model of obesity is accompanied by enteric nervous system abnormalities such as altered motility. METHODS: The study examined the distribution of the P2X(2) receptor (P2X(2)R) in myenteric neurons of female ob/ob mice. Specifically, we used immunohistochemistry to analyze the co-expression of the P2X(2)R with neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and calretinin (CalR) in neurons of the small intestine myenteric plexus in ob/ob and control female mice. In these sections, we used scanning confocal microscopy to analyze the co-localization of these markers as well as the neuronal density (cm(2)) and area profile (mu m(2)) of P2X(2)R-positive neurons. In addition, enteric neurons were labeled using the nicotinamide adenine dinucleotide (NADH) diaphorase method and analyzed with light microscopy as an alternate means by which to analyze neuronal density and area. RESULTS: In the present study, we observed a 29.6% increase in the body weight of the ob/ob animals (OG) compared to the control group (CG). In addition, the average small intestine area was increased by approximately 29.6% in the OG compared to the CG. Immunoreactivity (IR) for the P2X(2)R, nNOS, ChAT and CaIR was detectable in the myenteric plexus, as well as in the smooth muscle, in both groups. This IR appeared to be mainly cytoplasmic and was also associated with the cell membrane of the myenteric plexus neurons, where it outlined the neuronal cell bodies and their processes. P2X(2)R-IR was observed to co-localize 100% with that for nNOS, ChAT and CaIR in neurons of both groups. In the ob/ob group, however, we observed that the neuronal density (neuron/cm(2)) of P2X(2)R-IR cells was increased by 62% compared to CG, while that of NOS-IR and ChAT-IR neurons was reduced by 49% and 57%, respectively, compared to control mice. The neuronal density of CaIR-IR neurons was not different between the groups. Morphometric studies further demonstrated that the cell body profile area (mu m(2)) of nNOS-IR, ChAT-IR and CaIR-IR neurons was increased by 34%, 20% and 55%, respectively, in the OG compared to controls. Staining for NADH diaphorase activity is widely used to detect alterations in the enteric nervous system; however, our qualitative examination of NADH-diaphorase positive neurons in the nnyenteric ganglia revealed an overall similarity between the two groups. CONCLUSION: We demonstrate increases in P2X(2)R expression and alterations in nNOS, ChAT and CaIR IR in ileal myenteric neurons of female ob/ob mice compared to wild-type controls. (c) 2012 Baishideng. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crotalphine, a 14 amino acid peptide first isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, induces a peripheral long-lasting and opioid receptor-mediated antinociceptive effect in a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. In the present study, we further characterized the molecular mechanisms involved in this effect, determining the type of opioid receptor responsible for this effect and the involvement of the nitric oxide-cyclic GMP pathway and of K+ channels. Crotalphine (0.2 or 5 mu g/kg, orally; 0.0006 mu g/paw), administered on day 14 after nerve constriction, inhibited mechanical hyperalgesia and low-threshold mechanical allodynia. The effect of the peptide was antagonized by intraplantar administration of naltrindole, an antagonist of delta-opioid receptors, and partially reversed by norbinaltorphimine, an antagonist of kappa-opioid receptors. The effect of crotalphine was also blocked by 7-nitroindazole, an inhibitor of the neuronal nitric oxide synthase; by 1H-(1,2,4) oxadiazolo[4,3-a]quinoxaline-1-one, an inhibitor of guanylate cyclase activation; and by glibenclamide, an ATP-sensitive K+ channel blocker. The results suggest that peripheral delta-opioid and kappa-opioid receptors, the nitric oxide-cyclic GMP pathway, and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine. The present data point to the therapeutic potential of this peptide for the treatment of chronic neuropathic pain. Behavioural Pharmacology 23:14-24 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present study was to investigate the effects of an acute aerobic exercise on arterial pressure (AP), heart rate (HR), and baroreflex sensitivity (BRS) in STZ-induced diabetic rats. Male Wistar rats were divided into control (n = 8) and diabetic (n = 8) groups. AP, HR, and BRS, which were measured by tachycardic and bradycardic (BR) responses to AP changes, were evaluated at rest (R) and postexercise session (PE) on a treadmill. At rest, STZ diabetes induced AP and HR reductions, associated with BR impairment. Attenuation in resting diabetes-induced AP (R: 103 +/- 2 versus PE: 111 +/- 3 mmHg) and HR (R: 290 +/- 7 versus PE:328 +/- 10 bpm) reductions and BR dysfunction (R: -0.70 +/- 0.06 versus PE:-1.21 +/- 0.09 bpm/mmHg) was observed in the postexercise period. In conclusion, the hemodynamic and arterial baro-mediated control of circulation improvement in the postexercise period reinforces the role of exercise in the management of cardiovascular risk in diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to examine the relationship between cardiac autonomic control derived from heart rate variability (HRV), high-sensitivity C-reactive protein (hs-CRP) and physical activity (PA) levels measured using accelerometers. A total of 80 healthy university students volunteered to participate in this study (20.56 +/- 0.82 years, 1.36 +/- 1.5 mg/L of hs-CRP). The participants were divided into groups based on tertiles of hs-CRP. Analysis of covariance adjusted to PA was used to assess group differences in HRV. Associations between hs-CRP, HRV indices and PA were analyzed using Pearson's correlation. The participants at the highest tertile of hs-CRP (tertile 3) had lower cardiac vagal modulation (SDNN, tertile 1=78.05 +/- 5.9,tertile 2=82.43 +/- 5.9,tertile 3=56.03 +/- 6.1; SD1, tertile 1=61.27 +/- 5.3, tertile 2=62.93 +/- 5.4, tertile 3=40.03 +/- 5.5). In addition, vagal indices were inversely correlated with hs-CRP but positively correlated with PA (SDNN r=-0.320, SD1 r=-0.377; SDNN r=0.304, SD1 r=0.299; P<0.05). Furthermore, the most physically active subjects had lower levels of hs-CRP and the highest levels of vagal modulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. To evaluate the efficacy of a 3-month exercise training program in counteracting the chronotropic incompetence and delayed heart rate recovery in patients with systemic lupus erythematosus (SLE). Methods. A 12-week randomized trial was conducted. Twenty-four inactive SLE patients were randomly assigned into 2 groups: trained (T; n = 15, 3-month exercise program) and nontrained (NT; n = 13). A sex-, body mass index-, and age-matched healthy control (C) group (n = 8) also underwent the exercise program. Subjects were assessed at baseline and at 12 weeks after training. Main measurements included the chronotropic reserve (CR) and the heart rate (HR) recovery (Delta HRR) as defined by the difference between HR at peak exercise and at both the first (Delta HRR1) and second (Delta HRR2) minutes after the exercise test. Results. Neither the NT SLE patients nor the C group presented any change in the CR or in Delta HRR1 and Delta HRR2 (P > 0.05). The exercise training program was effective in promoting significant increases in CR (P = 0.007, effect size [ES] 1.15) and in Delta HRR1 and Delta HRR2 (P = 0.009, ES 1.12 and P = 0.002, ES 1.11, respectively) in the SLE T group when compared with the NT group. Moreover, the HR response in SLE patients after training achieved parameters comparable to the C group, as evidenced by the analysis of variance and by the Z score analysis (P > 0.05, T versus C). Systemic Lupus Erythematosus Disease Activity Index scores remained stable throughout the study. Conclusion. A 3-month exercise training program was safe and capable of reducing the chronotropic incompetence and the delayed Delta HRR observed in physically inactive SLE patients.